03.09.2023

Храповое колесо с собачкой. Как работает храповый механизм? Бесшумная собачка храпового механизма


В различных машинах для их нормального функционирования используется не только непрерывное, но и прерывистое вращательное движение. Для того чтобы его осуществлять, используются специализированные механизмы , называемые храповыми .

В технике храповыми механизмами принято называть такие кинематические устройства, которые используются для того, чтобы преобразовывать возвратно-вращательное движение в движение прерывистое вращательное, имеющее одно направление. Отличительной особенностью храповых механизмов является то, что они позволяют производить изменение величины периодических перемещений рабочих частей станков и машин различного назначения, причём в весьма широком диапазоне и достаточно тонко.

Храповой механизм можно охарактеризовать, как устройство которое периодически создаёт препятствие воздействию силы на механизм и снова создаёт условия для его движения. Кроме того, их применяют с целью устранения возможности перемещения каких-либо звеньев машин и механизмов в одном направлении. Еще одно назначение храповых механизмов состоит в том, чтобы давать связанным между собой звеньям возможность свободно поворачиваться в одном направлении. Все храповые механизмы подразделяются на зубчатые и фрикционные.

Зубчатые храповые механизмы

Основными элементами зубчатых храповых механизмов являются зубчатая рейка или зубчатое храповое колесо и ползун или коромысло, на которых закреплена так называемая «собачка ». На храповом колесе могут располагаться внутренние, наружные, а также торцевые храповые зубья . Что касается «собачек », то их в большинстве случаев делают поворотными. К колесам они прижимаются или под влиянием собственного веса, или под действием специальных пружин.

Нередко бывают ситуации, когда нужно обеспечить вращение храповика как в одну, так и в другую сторону. Для обеспечения такого функционирования устройства его собачка делается перекидной, а зубья используются прямоугольной конфигурации. Для того чтобы изменит направление вращения храповика , необходимо переключить «собачку » из одного положения в другое.

Фрикционные храповые механизмы в современной технике получили весьма широкое распространение. Они подразделяются на колодочные, кулачковые и роликовые.

Чаще всего фрикционные храповые механизмы используются тогда, когда нужно обеспечить надежное сцепление различных элементов при значительных скоростях, причем в любом их угловом положении друг относительно друга. Движение в одном определенном направлении в таких механизмах выполняется за счет того, что при заклинивании промежуточных звеньев фрикционных обойм возникает большая сила трения.

Применение храповых механизмов

Сфера применения храповых механизмов различных типов и конструкций весьма широка. Чаще всего их используют в самом разнообразном станочном оборудовании. К примеру, без храповых механизмов с наружным храповым колесом не обходится практически ни один современный поперечно-строгальный станок. В продольно-строгальном оборудовании обычно используются механизмы с торцевыми храповыми муфтами . Их устанавливают в приводах подач. В конструкции некоторых круглошлифовальных станков применяются храповые механизмы с поршневыми приводами. Они монтируются в системах радиальных подач.

Помимо станкостроения храповые механизмы используются также в приборостроении, автомобилестроении, авиастроении. Их часто можно встретить в различных отсчетных устройствах, заводных механизмах, стартерах, лебедках, домкратах и т.п.

Для прерывистого перемещения рабочих органов станков используют механизмы периодического действия, которые за часть полного периода (цикла) своей работы сообщают исполнительному механизму прерывистое движение, повторяющееся в каждом цикле. Такие устройства необходимы для подачи стола на строгальных и долбежных станках, поворота многоинструментальных головок, поперечной подачи шлифовальной бабки, поворота нарезаемого зубчатого колеса на следующий зуб и т. д. Во всех указанных случаях рабочий орган станка совершает в определенный момент прерывистое перемещение. Обычно для периодических прерывистых движений узлов и деталей станков применяются следующие механизмы: храповые, кулачковые, мальтийские, с муфтами обгона, электрического действия, гидравлического и пневматического действий.

Храповые зубчатые механизмы подразделяются на механизмы с наружным зацеплением (односторонние и двусторонние) и механизмы с торцовым зацеплением. Храповые механизмы применяются для получения периодических (прерывистых) движений подач в строгальных и долбежных станках, поворотов револьверных головок, цикличных движений в автоматах. Они удобны в тех случаях, когда периодические перемещения строго ограничены временем перебега или обратного хода резца.

Основные схемы храповых механизмов показаны на рис. 39. Ведущим звеном является собачка 1, совершающая возвратно-качательное движение, а ведомым - храповое колесо 2, которое может быть с наружным (рис. 39, а), внутренним (рис. 39, б) и торцовым (рис. 39, в) зацеплениям и. При каждом цикле качания собачка поворачивает храповое колесо на заданное число зубьев и отходит в исходное положение, проскальзывая по зубьям храповика.

В механизме с наружным храповым колесом (см. рис. 39, а) при равномерном вращении кривошипа К, связанного с ним шатуна Ш Н рычаг Р Г получает непрерывное качательное движение относительно точки 0 2 . С рычагом Р Г связана собачка 1, упирающаяся в зубья колеса z 2 . П ри качании коромысла по стрелке, а-б (в сторону б) собачка приподнимается, скользит по спинкам зубьев и колесо не поворачивается. Принцип действия других конструкций аналогичен.

На рис. 39, г показан храповой механизм с поршневым приводом, содержащим цилиндр Ц, поршень П и шатун Ш Н. Храповые колеса и собачки изготовляются из сталей 15Х, 20Х, которые цементируются и закаливаются.

Основные размеры храповых колес (мм):

где D - наружный диаметр храпового колеса, мм; m - модуль, мм; z - число зубьев храпового колеса; Р - шаг, мм; α - угол поворота храпового колеса, градус; α 1 - число зубьев, захватываемых собачкой.

Кулачковые механизмы по виду движения разделяются на механизмы радиального и аксиального движения.

Наибольшее распространение получили плоские кулачковые механизмы, которыми легко осуществлять разнообразные функции управления при сравнительной компактности и несложной конструкции. Через плоские кулачковые механизмы преобразуется вращательное движение кулачка в поступательное движение толкателя. В механизмах с цилиндрическими кулачками барабанного типа (рис. 40, а) или торцового типа (рис. 40, б) ведущим звеном является кулачок 1 с пазом, по которому перемещается ролик толкателя 2. Такие механизмы применяются в станках-автоматах и полуавтоматах для осуществления автоматического цикла работы. Максимальная длина хода (по кривой кулачка) для барабанных кулачков составляет до 300 мм, для дисковых плоских кулачков 100-120 мм.

Принцип работы дискового кулачка (рис. 40, в) торцового типа состоит в следующем. Дисковый кулачок 1 равномерно вращается от привода вокруг оси О 1 . На поверхность профильного кулачка опирается ролик 2 с рычажным механизмом, заканчивающимся ползуном С, связанным с рабочим органом Р 0 . При равномерном вращении ролик 2 будет качаться соответственно профилю кулачка и через рычажный механизм, и ползун С передает прямолинейное возвратно-поступательное движение рабочему органу Р 0 . Материалами для кулачков обычно служат стали 50 и 40Х с поверхностной закалкой, при нагреве токами высокой частоты (ТВЧ) и закалке до твердости НRС 52-58.

Мальтийские механизмы . На рис. 41, а изображена схема мальтийского механизма, где ведущим звеном является вал I с кривошипом 1, а ведомым шестипазовый диск 2 - мальтийский крест, жестко закрепленный на валу II. При каждом обороте кривошипного вала I палец кривошипа 1 входит в один из пазов мальтийского креста и сообщает ему прерывистый поворот на угол 2α = 360°/z, где z - число пазов креста. Для плавного поворота креста, без жестких ударов в начале и конце поворота, должно удовлетворяться условие α + β = 90°, где β - половина центрального угла пальца креста.

На рис. 41, б изображен мальтийский механизм, состоящий из кривошипа и креста, его передаточное отношение зависит от числа пазов креста, которых может быть от 3 до 8:

В четырехпозиционном мальтийском механизме при равномерном вращении кривошипа 2, закрепленный на нем ролик 1 в определенный момент входит в один из четырех пазов мальтийского креста 4 и поворачивает его на 90°. За каждый последующий полный оборот кривошипа 2 вал с мальтийским крестом сделает только 1/4 оборота. Диск 3, жестко связанный с кривошипом, служит для фиксации положения креста в каждой из его четырех позиций.

Фиксирующие устройства. Многие перемещаемые узлы и детали станков при их установке в рабочее положение должны точно координироваться относительно других узлов и деталей станка. Для этого применяют фиксаторы. Круглый конический фиксатор (рис. 42, а) дает точную фиксацию, так как зазор между коническими поверхностями штифта 1 и втулки 2 отсутствует. Плоский конический фиксатор (рис. 42,6) обеспечивает большую жесткость и точность фиксации. Клин 1 подтягивается винтом 2 для устранения зазора между корпусом 3 и фиксатором 4. Фиксаторы применяют, например, для фиксации в рабочее положение поворотной револьверной головки на токарно-револьверном станке или автомате, для обеспечения соосности осей шпинделя и соответствующего гнезда револьверной головки, для установки режущего инструмента. Поворотный шпиндельный блок многорезцового токарного автомата должен точно координироваться относительно режущих инструментов так, чтобы прутковые и инструментальные шпиндели располагались соосно. Фиксаторы также необходимы для поворотных столов, делительных и других устройств.

Механизмы обгона являются разновидностью дифференциальных механизмов. Их применяют в тех случаях, когда необходимо передавать два вращательных движения от двух независимых источников на один вал, а также используют для обеспечения медленных рабочих и быстрых холостых движений. Механизмы обгона конструируют в виде храповых, роликовых или шариковых муфт.

Колесо 2 храповой муфты обгона (рис. 43, а) получает медленное вращение РХ (рабочий ход) против часовой стрелки. Оно свободно сидит на валу 4 и имеет на пальце собачку 3. Храповое колесо 1 при помощи шпонки жестко посажено на вал, который может быстро вращаться в том же направлении со скоростью XX (холостой ход). При рабочем ходе колесо 2 через собачку 3 вращает храповое колесо 1, ас ним и вал 4. При включении холостого хода от отдельного электродвигателя или другого устройства вал 4 получает быстрое вращение. В этом случае храповик будет обгонять собачку, и тогда медленное движение от колеса 2 на вал передаваться не будет.

Колесо 2 роликовой муфты обгона (рис. 43, б) свободно сидит на диске 3 с угловыми вырезами, в которые помещены ролики 1.

Контакт роликов с кольцом осуществляется подпружиненными пальцами 4. Диск получает быстрое, а кольцо медленное движение в одном направлении. Кольцо 2 непрерывно медленно вращается и увлекает за собой ролики 1, которые, перекатываясь, заклиниваются в угловом пазу между кольцом и диском 3, который получает таким образом медленное вращение. При этом можно сообщить быстрое вращение валу, несущему диск 3, который, обгоняя кольцо 2, расклинивает ролики 1.

Муфты обгона используют в токарных, многорезцовых, сверлильных и других станках для передачи рабочих и ускоренных движений, а также для ручной подачи и других целей.

Состоящий из храпового (зубчатого) колеса с косыми зубьями и рычага с укреплённым на нём промежуточным звеном (собачкой). Храповый механизм преобразует возвратно-вращательное движение рычага в прерывистое вращение храпового колеса. При вращательном (рабочем) движении рычага собачка под действием пружины свободным концом упирается в зуб колеса и поворачивает его на некоторый угол. При возвратном (холостом) ходе рычага собачка свободно скользит по косым кромкам зубьев, пока не остановится. Чтобы во время холостого хода рычага не вращалось в обратную сторону, имеется дополнительная стопорная собачка. Во время следующего рабочего движения рычага собачка снова поворачивает колесо. Таким образом вращательные движения рычага преобразуются в периодическое вращение колеса только в одном направлении. Чтобы повернуть колесо в обратную сторону, надо удержать обе собачки от контакта с зубьями. Храповый механизм применяют в качестве задерживающего устройства – напр., в грузоподъёмных машинах (зубчатое колесо соединено с барабаном лебёдки, и собачка удерживает барабан от обратного раскручивания под тяжестью поднимаемого груза). Храповый механизм используется в часах с пружинным заводом (при заводе часов он предотвращает самопроизвольное раскручивание заводной пружины).

1 – храповое колесо; 2 – собачка; 3 – рычаг; 4 – стопорная собачка

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "храповый механизм" в других словарях:

    Храповой механизм, состоящий из собачки (a) и зубчатого колеса (b) Храповой механизм (храповик) зубчатый механизм прерывистого движения, предназначенный для преобразования возвратно вращательного движения в прерывистое вращательное движение в… … Википедия

    I Часы прибор для измерения текущего времени (в секундах, минутах, часах). Ч. относятся к категории «приборов времени», куда входят также Хронометр, Секундомер, Таймер, Реле времени и комбинированные приборы, например Ч. с секундомером.… … Большая советская энциклопедия

    Milkor MGL - 40мм гранатомет Milkor MGL Mk.1 (Южная Африка) гранатомет Milkor MGL Mk.1 гранатомет Milkor MGL 140 с удлиненным барабаном и направляющими типа Picatinny на цевье гранатомет Milkor MGL 140 в действии Характеристики Разработка… … Энциклопедия стрелкового оружия

Храповик - одно из старейших механических изобретений человека. Конструкционная простота и функциональная эффективность позволили ему сохранять актуальность даже в эпоху цифровых технологий. Разумеется, и целевые системы, в которых применяется храповый механизм, сложно назвать технически высокоразвитыми, но это не отменяет эксплуатационные достоинства их устройства.

Сфера применения

На храповиках базируются и промышленные агрегаты с компонентами инженерных конструкций, и работа мелких фурнитурных элементов для инструмента. Это говорит об универсальности устройства и его гибкости с точки зрения технической интеграции. Например, простейший храповый механизм для касок позволяет осуществлять регулировку ремня оголовка через колесико, передающее движение системе фиксации.

В инструментах данное устройство служит как средство установки определенных рабочих параметров. В конструкции секатора, в частности храповик позволяет четко фиксировать шаг реза в рамках заданного диапазона. Если же говорить о более ответственных направлениях, то на первый план выйдет станочное производственное оборудование. Поперечно-строгальные агрегаты оснащаются наружными колесами храповиков, которые выдерживают большие физические нагрузки. В круглошлифовальных станках данное устройство задействуется в целях обеспечения радиальных подач - монтаж производится в комбинации с поршневыми приводами. Помимо этого, храповики используют в лебедочных системах, домкратах, стартерных и заводных механизмах.

Конструкционное исполнение

Функциональные части механизма работают на обеспечение прерывистого движения, требуемого для одностороннего смещения зубчатого колеса. Последнее выступает наиболее значимой частью системы и представляет собой металлический диск с зубцами. Для обеспечения надежности колесо изначально выполняется по технологии ковки или литьевым способом.

Количество зубцов может быть разным - это зависит от рабочего диапазона целевой конструкции. В типовых моделях возможность 30-градусного поворота обеспечивают 12 зубцов. Минимальное число переходных пазов достигает 6 - к примеру, такая конфигурация используется в храповых механизмах для стяжных ремней-рэчетов. Кроме рабочего колеса, в конструкцию также входит крепежная «собачка», стопорный механизм, вал и рычаг. Физические свойства элементов, схема расположения, наличие отдельных функциональных компонентов и размеры могут меняться в зависимости от модели и особенностей конструкции.

Как работает храповый механизм?

В каждом устройстве предусмотрен своего рода спусковой элемент (рычаг, привод, крюк), приводящий систему в действие. Изначально «собачка» находится в контакте с колесом, но после активации механизма начинается осевое вращение, влекущее за собой и смещение фиксатора.

Тяга может обеспечиваться разными источниками тяги. В том же секаторе пуску способствует ручной нажим, а в станках - электродвигатель. Так или иначе, в процессе движения колеса «собачка» начинает скольжение и последующее перемещение по внешним поверхностям зубцов. Важно подчеркнуть, что в этот момент она не оказывает никакого влияния на колесо. Но после остановки движения храповый механизм запирается посредством упора «собачки» в один из пазов. Данный цикл может повторяться до тех пор, пока не будет получен требуемый результат при осуществлении регулировки, подъема или настройки по определенным параметрам целевой системы.

Разновидности механизма

Существует множество классификаций, обусловливающих разнообразие храповиков. К примеру, профилированная поверхность может быть реечной или барабанной. Первый вариант используется в особых случаях, так как линейное размещение зубцов менее функционально и эргономично, чем по окружности. Барабанные же системы как раз и представляют собой устройства с рабочими колесами. Есть и классификация профиля основы, на которой располагаются пазы. Он может быть прямоугольным, радиальным и пологим. Чаще применяются радиальные системы как наиболее удобные в использовании, надежные и компактные. С прямоугольным профилем обычно выполняется храповый стяжной механизм, поскольку небольшие размеры регулирующей оснастки в данном случае не позволяют использовать зубцы с заостренными и наклонными гранями.

Особенности работы двунаправленных механизмов

Одной из ключевых черт классического храповика является вращение колеса или рейки только в одну сторону. Но есть также и отдельный класс механизмов, которые сохраняют тот же эксплуатационный эффект, но действуют иначе. Вращение у двунаправленных систем реализуется и влево, и вправо. Причем зубцы обязательно должны быть прямоугольными - только в этой конфигурации можно обеспечить равномерность смещения колеса. Главная же особенность храпового механизма двунаправленного типа заключается в системе перемещения «собачки». Она не переходит и не сползает по поверхности колеса, а перекидывается. Это расширяет возможности управления системой, но и усложняет ее, делая менее надежной.

Как самостоятельно изготовить храповик?

Техника выполнения конструкции будет зависеть от требований к системе, в которой она будет использоваться. За основу можно взять вал в виде отрезка металлической трубы, вырезку из стального листа и кусок профиля, который выполнит роль «собачки». Основная сложность будет заключаться в подгонке размеров этих компонентов, ведь только при условии оптимального схождения можно обеспечить стабильную работоспособность храпового механизма. Своими руками также следует изготовить несущую базу - для нее используют металлический каркас, собранный из тех же стальных листов. Посредством сварки к нему с двух сторон крепится вал, на который садится предварительно обработанный диск с вырезанными пазами. Для установки «собачки» следует предусмотреть ходовой зажим с пружинной системой. Инсталляция осуществляется метизами или сваркой.

В заключение

У храповиков немало преимуществ, но есть и слабые места, которые необходимо учитывать при покупке устройств с таким механизмом. В первую очередь, на систему ложится высокая ответственность, что обуславливает и повышенные требования к обслуживанию.

В тех же станках и грузоподъемных агрегатах обязательным условием является регулярная смазка колеса и пятен контакта с «собачкой». Использование храпового механизма в мелком инструменте и дополнительных приспособлениях тоже имеет свои недостатки, обусловленные заеданием небольших деталей. Но в каждом случае качество работы системы будет зависеть от характеристик изделия. Крупные производители применяют в конструкции храповиков долговечные компоненты с оптимальным сочетанием эксплуатационных свойств. Другое дело, что наличие такого механизма может существенно повышать ценник устройства.

9. Мелкомодульные храповики

Наружное зацепление

Внутреннее зацепление

Для внутреннего зацепления брать значения D, не отмеченные звездочкой.

Общие размеры, мм

Зацепление

наружное

внутреннее

Продолжение табл. 9

Диаметр Dзацепления при числе зубьев

10. Храповик переключения (число зубьев z от 12 до 30)

Размеры, мм

t = πm – шаг, мм;

2R= mz- диаметр начальной окруж­ности, мм;

h = m – высота зуба, мм

Построение профиля. Разделить внешнюю окружность NN на z равных частей (AA=t), через точки деления провести радиусы и построить угол β = 4°. В точке С пересече­ния образующей угла β с окружностью SS, ограничивающей впадины зубьев, построить угол А 1 СВ=80° искомого профиля

11. Остановочные храповики с наружным и внутренним зацеплениями

(число зубьев z от 8 до 30)

t = πm – шаг, мм;

2R= mz – диаметр начальной окруж­ности, мм;

h= 0,75m – высота зуба, мм;

а = m – длина хорды АВ, мм

Размеры, мм

Параметры

Храповика

Построение профилей наружного и внутреннего зацеплений (в скобках дана величина углов при внутрен­нем зацеплении). Описывают начальную окружность NN и окружность оснований зубьев SS. Окружность NN делят шагом t на равные час­ти. От любой точки деления откладывают хорду АВ=а. На хорде ВС при точке С строят угол в 30º (20°). В середине хорды ВС восстанавли­вают перпендикуляр LM до пересечения в точке 0 со стороной угла СК. Из точки 0 радиусом 0С описывают окружность. Точка F пересече­ния этой окружности с окружностью SS есть вершина угла в 60° (70°).

Расчет храповиков

В качестве исходных данных необходи­мо знать требуемый угол поворота храпо­вого колеса аº и передаваемый крутящий момент на валу храпового колеса.

Предварительное число зубьев храпового колеса z пр = 360º/а; принимают z= 8…48, предпочтительно z = 12…20.

Фактический угол поворота храпового колеса (на один зуб)

Модуль храпового колеса, мм:

для наружного зацепления

для внутреннего зацепления

где М кр – крутящий момент на валу хра­пового колеса, Н·мм;

ψ – отношение ширины колеса к модулю;

Рис. 5. Схема к расчету храповиков

Расчетный модуль округляют до стан­дартного. Проверку линейного давления производят по формуле

где b – ширина зуба, мм; [σ и ] – допускае­мое напряжение на изгиб для материала колеса, МПа;

q – допускаемое давление на единицу дли­ны зуба, Н/мм. Ширина собачки b 1 ≤ b.

Значения ψ, qи [σ и ] для различных материалов храповых колес приведены в табл. 12.

12. Значения ψ, q и [σ в ]

Храповые колеса и их собачки изготовляют закаленными и цементованными с закалкой.

Напряжение в опасном сечении а – b или с – d собачки (рис. 5)

где окружная сила

Изгибающий момент

М u = Рl (здесь l- плечо изгиба);

Диаметр оси собачки: в сечении I – I

в сечении II –II

где [σ и ] ≤ 50МПа для оси собачки из стали Ст5 или стали 45.