04.09.2023

Однотактные ламповые усилители. Ламповый усилитель. Редкий пример хорошего однотакта УНЧ с трансформатором на выходе


Сразу оговорюсь - данная антология никоим образом не претендует на звание пособия по ламповой схемотехники. Схемы (в том числе исторические) отбирались по сочетанию технических решений, по возможности с "изюминками". А вкусы у всех разные, так что не взыщите, если не угадал... В старых схемах ряд номиналов приведен к стандартным.

Скептики уверяют, что некоторые схемы вообще звучать не могут "по определению". Вот одна схема, которая производит именно такое впечатление. Но все-таки она работала!

Это схема взята в качестве отправной точки. Усилитель выполнен на новых тогда пальчиковых лампах, по классической схеме на пентодах без общей ООС. Интересно решена цепь регулировки тембра ВЧ, но реально работать "на подъем" она может только при высококачественном выходном трансформаторе. Поскольку усилитель предназначался для электропроигрывателя, на силовом трансформаторе сэкономили. Если кроме звукоснимателя ничего больше к нему не подключать, электробезопасность с некоторой натяжкой соблюдается. Хорошо жить в цивилизованных странах - розетки правильные. Вот фаза, вот нейтраль, вот ноль. И во всех розетках почему-то одинаково. А у меня в квартире, например, часть выключателей стояла не в фазном проводе, а в нулевом. Что уж после этого от розеток требовать...

От пентодов в первом каскаде отказались довольно быстро. Два триодных каскада справлялись с этой задачей не хуже, а качество звучания возросло. Дальнейшее улучшение принесли ультралинейные схемы выходных каскадов. В таком включении экранная сетка присоединяется к отводу первичной обмотки выходного трансформатора. Возникающая при этом местная ООС значительно снижает выходное сопротивление каскада и повышает его линейность, причем усиление снижается ненамного. Правда, ультралинейная схема в основном использовалась в двухтактных усилителях. Ниже приведена схема типичного однотактного усилителя с ультралинейным выходным каскадом.


рис.2

Номиналы деталей в регуляторе тембра скорректированы с учетом современных требований - в оригинале они только горбатили АЧХ на 5 кГц. Впрочем, подъем ВЧ тогда вообще применяли редко. Варианты этой схемы буйно расцвели в эпоху совнархозов, когда партия и правительство решили завалить страну дешевыми радиотоварами. Ультралинейный каскад исчез, регулятор тембра упростили, а силовой трансформатор нередко упраздняли вообще или ставили только накальный. Экономили на всем, и это заметно. Звучание проигрывателей в картонных чемоданах помнят многие - неплохая середина, а больше ничего нет.

При повторении схемы можно отказаться от регулятора тембра, а вместе с ним исключить первый каскад усиления. Тогда в двухканальном варианте для драйвера понадобится только один двойной триод. Можно также ввести неглубокую ООС с выхода усилителя в цепь катода первого или второго каскада.

Повышению глубины ООС в ламповых усилителях препятствует набег фазы на разделительных конденсаторах. Для устранения этого недостатка межкаскадная связь должна быть непосредственной. И такая схема появилась:


рис.3

Поскольку при низком анодном напряжении крутизна лампы снижается, для получения необходимого усиления пришлось использовать пентод. Триоды с необходимыми характеристиками появились позже. Еще одна изюминка схемы - включение мостового регулятора тембра в цепь общей ООС усилителя. Достоинство этого решения в том, что при максимальном подъеме АЧХ исключается перегрузка по входу. Если регулировка производится в предварительном усилителе, риск такой перегрузки есть. Поэтому включение регуляторов в цепь ООС усилителя мощности применялось долгое время и в усилителях на транзисторах и микросхемах. Качество звучания, кстати, от этого явно выигрывает.

Прямой наследник этой схемы - усилитель Губина, неизменный участник выставок Hi-End. Он может работать с пентодным и триодным включением ламп выходного каскада. Для полного счастья можно предусмотреть и ультралинейный вариант.


рис.4

Однако у схем с непосредственной связью есть и недостатки. Первый - необходимость подавать анодное напряжение только после прогрева катодов. В противном случае высокое напряжение на сетках может вывести лампы из строя или сократить срок их службы. Для этого нужно использовать устройства задержки подачи анодного напряжения, или выполнить выпрямитель на кенотроне с большой тепловой инерцией катода. На худой конец можно использовать отдельный тумблер для анодного напряжения, но это не слишком удобно.

Второй недостаток - противоречие между экономичностью и качеством звучания. При использовании в выходном каскаде автоматического смещения приходится либо снижать анодное напряжение драйвера, либо смириться с увеличением мощности, рассеиваемой на резисторе в цепи катода.

Интересное решение этой проблемы нашлось на http://www.svetlana.com/. Можно подать сигнал в цепь экранной сетки выходного пентода, постоянное напряжение на ней обычно близко к анодному напряжению драйвера. Резистор автоматического смещения при этом может иметь относительно небольшое сопротивление. Правда, крутизна по экранной сетке значительно ниже, но зато и линейность лучше. Первая сетка при этом заземляется, а пентод превращается в своеобразный триод, работающий с сеточным током (режим А2). Но драйвер придется умощнять катодным повторителем.


рис.5

Кстати, если первую сетку выходного пентода не заземлять напрямую, ее можно использовать для подачи сигнала местной ООС, в том числе и частотно-зависимой. А это уже путь к созданию полосового усилителя без отдельного кроссовера.

Сходное решение драйвера используется и в другом усилителе. Он попал сюда из-за параллельного включения триодов выходной лампы. Однако минусов там немало, прежде всего - чудовищная расточительность. Из всей потребляемой усилителем мощности почти треть приходится на цепи смещения. Гораздо разумней было бы использовать для смещения отдельные выпрямители, а в драйвере - SRPP на двойном триоде средней мощности.

Лучевой тетрод 6П7С является практически полным аналогом «звуковых» ламп 6ПЗС, 6L6G, адаптированным для работы в схемах строчной развертки телевизоров.

Он отличается улучшенной изоляцией между электродами, несколько большим импульсом анодного тока, повышенной электрической прочностью. Вывод анода вынесен на купол колбы пампы в виде металлического колпачка (рис. 1). В то же время, ВАХ тетрода 6П7С весьма близки к таковым 6ПЗС и 6L6.

Рис. 1. Конструкция и цоколевка лампы 6П7С.

Высокое качество ее звучания приближается к звучанию генераторного тетрода типа Г-807. Последний заметно превосходит такую общепризнанную «классику» как 6ПЗС/6L6 и 6П27С/ЕL34.

При построении выходных каскадов усилителей ЗЧ можно без особых проблем воспользоваться электрическими режимами, принятыми для ламп 6ПЗС/6L6 или 6П27С/ EL34.

  • напряжения на аноде Ua = 250 В, экранной сетке Uc2 = 250 В, катоде Ек = 14 В (резистор автоматического смещения Rk = 180 Ом 2 Вт);
  • ток анода Іа0 = 72 мА, экранной сетки Іэ0 = 5,8 мА (гасящий резистор Rc2 = 2,4 кОм 0,25 Вт);
  • напряжение возбуждения на управляющей сетке Ucl=10 В.

В таком режиме крутизна лампы S = 5,9 мА, внутреннее сопротивление R(= 32 кОм, сопротивление анодной нагрузки Ra = 2,5 кОм, максимальная (Кг = 10%) выходная мощность 6,5 Вт.

Напряжение/ток накала 6,3 В/900 мА, предельно допустимое напряжение на аноде 500 В, длительно рассеиваемая на аноде мощность не более 20 Вт.

Принципиальная схема УМЗЧ

Пример практической реализации УМЗЧ с однотактным выходным каскадом на лампе 6П7С при работе в схеме с автоматическим смещением на управляющих сетках показан на рис. 2. Входной сигнал поступает на резистор R1, выполняющий роль регулятора усиления.

Рис. 2. Схема самодельного УМЗЧ с однотактным выходным каскадом на лампе 6П7С.

Остановимся на этом элементе подробнее, поскольку входные цепи во многом определяют качество звучания устройства. Начнем с регулировочных характеристик.

Для регуляторов громкости общепринятыми являются резисторы с показательной (обратнологарифмической) зависимостью сопротивления от угла поворота движка, т. е. необходима характеристика типа «В».

Конструкция резистора должна обеспечивать надежный механический контакт между подвижными электродами и токопроводящим элементом.

Объяснение очень простое: в данной зоне происходит сильнейшая деградация звукового сигнала, не говоря уже о том, что хрипы и трески в процессе регулировки просто-напросто действуют на нервы.

Для сдвоенных резисторов важным показателем качества является разбаланс характеристик. Рассмотрим возможные варианты выбора.

Сразу же отклоняем «экстремистский» вариант — применение типично «хай-эндовских» компонентов, подобных Ricken Ohm, — они мало кому доступны. Остановим выбор на более распространенной элементной базе.

Из импортных достаточно качественных и не слишком дорогих аудиокомпонентов можно рекомендовать резисторы фирм ALPS, Bourns, Spectroll. Из отечественных неплохо работают объемные композиционные типа СП4-1 или СПО.

Совет. Не следует применять металлопленочные и лакопленочные элементы.

Из дискретных регуляторов возможно использование отечественных типа РП1-57Е. Желающие могут попробовать поставить проволочные потенциометры ПТП-21.

Первый каскад усилителя собран на одной половинке двойного «звукового» триода 6Н8С (VL1.1). Входной усилитель на 6Н8С использует обе части этой лампы.

Он представляет собой стандартный усилитель напряжения с резистивной нагрузкой и коэффициентом передачи порядка 11. Рабочий режим лампы VL1.1 задается резистором автоматического смещения R4, анодной нагрузкой служит резистор R5.

Второй каскад, подобно первому, также является типичным усилителем напряжения с резистивной нагрузкой R8 в анодной цепи. Коэффициент его передачи порядка 5.

Примечание . Единственное отличие второго каскада от «классической» схемы заключается в увеличенном на порядок сопротивлении автоматического смещения R9 в цепи катода VL 1.2. Это вызвано необходимостью установки корректного рабочего режима при большом положительном потенциале на управляющей сетке триода.

Высокое сопротивление в цепи катода предопределяет большую глубину местной ООС, которая значительно снижает усиление по переменному току. Кроме этого, согласно концепции построения High-End аппаратуры, наличие ООС является нежелательным.

В связи с этим резистор R9 зашунтирован электролитическим конденсатором С2. К его качеству предъявляются повышенные требования, т. к. этот элемент довольно сильно влияет на звучание устройства. Специализированные аудиоэлектролиты типа Elna-Gerafine высокого качества имеют не менее высокую цену и малодоступны.

Совет. Можно воспользоваться алюминиевыми оксидно-лектролитическими конденсаторами типа К50-24, К50-29; чуть хуже К50-35. Из двух однотипных компонентов с одинаковыми электрическими характеристиками, но разными размерами, предпочтение отдать следует конденсаторам с большими корпусами. Последние обычно лучше звучат, хотя в каскадах предварительного усиления эта примета оправдывается не всегда.

Попытка зашунтировать С2 пленочными или бумажными конденсаторами не привела к получению четко выраженного желаемого эффекта. В качестве С2 не рекомендуется использовать оксиднополупроводниковые.

Впрочем, к особенностям выбора конденсаторов, устанавливаемых в катодной цепи лампы, мы еще вернемся при изучении оконечного каскада. По переменному току второй и оконечный каскады связаны между собой разделительным С4.

Этот элемент на качество звучания влияет самым радикальным образом, поэтому разговор о требованиях к его качеству заслуживает особого внимания.

Сразу отметим, что идеального компонента, который бы совершенно не портил звук, в природе просто-напросто не существует. К таковым можно было бы отнести вакуумные либо воздушные конденсаторы.

Однако представить, а тем более реализовать на практике, усилитель с «проходником» размером с пару танковых аккумуляторов весьма проблематично. Поэтому выбор типа С4 всегда является компромиссом.

Конечно, можно просто отметить высокое качество специализированных аудиофильских изделий таких фирм как Jensen Capacitors либо экзотики «разлива» Audio Note, и на этом поставить точку. Но запредельная цена таких компонентов моментально переводит их практически для всех радиолюбителей в разряд столь же запредельных мечтаний.

Остановимся подробнее на реально доступных элементах общего применения отечественного производства. По мнению многих разработчиков аудиоаппаратуры наилучшими считаются бумаго-масляные и бумаго-фольговые изделия типов К40-9-5 (с 5-й приемкой); К40-У9; К40А-2; КБГ; ОКБГ; БМ-2; БМТ-2.

Чуть хуже металлобумажные вроде МБМ, МБГ, К42-.... Последние отличаются тем, что их обкладки получают нанесением на бумагу тонкого, не более 1 мкм, слоя металлизации (для сравнения: толщина алюминиевой фольги 80 мкм), а после свертывания пакета в рулон заготовку пропитывают церезином.

Вследствие таких конструктивных и производственно-технологических особенностей металлобумажные конденсаторы по сравнению с бумаго-масляными и бумаго-фольговыми имеют пониженную электрическую прочность, которая за счет диффузии ионов металлизации в диэлектрик в процессе старения уменьшается еще больше.

Существует некоторая «вязкость» звучания бумажных конденсаторов в области высоких частот. В то же время «слюдянка», обеспечивая четкость и прозрачность «верха», не позволяет получать необходимую пластичность и рельефность звука в области средних частот и мид-баса, которыми столь славится «бумага».

Примечание. После ряда экспериментов автору удалось установить, что параллельное включение бумажного и слюдяного конденсаторов, емкость последнего должна составлять 1—7% от емкости основного, позволяет совместить достоинства звучания обоих типов.

Подбором соотношений емкостей можно в некоторой степени изменять характер звуковоспроизведения. Практика показала следующее: для разделительного конденсатора емкостью более 0,1 мкФ в случае, когда входное сопротивление последующего каскада составляет не менее 200 кОм, слюдяной дополнительный конденсатор должен иметь емкость в пределах 2—10 тыс. пФ.

Таким образом, С4 можно составить из «бумажника», скажем, типа К40У-9 или БМТ-2 емкостью 0,22—0,25 мкФ с рабочим напряжением не менее 250 В и слюдяного конденсатора, например, КСО-5, КСО-11, емкостью 3000—6800 пФ с таким же, либо большим, максимальным рабочим напряжением.

Примечание. В случае построения стереофонического варианта усилителя к подбору конденсаторов, составляющих «проходник» С4, следует подойти особенно аккуратно.

В первую очередь, из имеющегося запаса однотипных «бумажников», причем желательно чтобы они были из одной партии, с помощью цифрового прибора необходимо отобрать два конденсатора с реально одинаковой емкостью.

Последнее требование более важно, чем точное соответствие номинала, указанному на принципиальной схеме. Поскольку емкость разделительного конденсатора менее критична, чем в корректирующих цепях, С4 может лежать в пределах 0,17— 0,29 мкФ.

Необходимость использования одинаковых элементов в обоих каналах аппарата вызвано стремлением получить равные АЧХ и ФЧХ, к рассогласованию которых стереосистемы очень критичны. А при одноканальном звуковоспроизведении даже очень большие фазовые искажения практически не сказываются.

Нелишним будет измерить коэффициент собственных нелинейных искажений конденсаторов с помощью прибора и методики, предложенных в [Лукин Е. «Комплекс для измерения сверхнизких нелинейных искажений» — «Радиохобби» №2/2000 с. 40]. Полезно убедиться в том, что собственный механический резонанс конденсатора не попадает в область звуковых частот.

!!! Внимание. Детали, имеющие «механический» резонанс в звуковом диапазоне, для аудиоаппаратуры не пригодны.

Завершив подбор бумажных конденсаторов, аналогичным образом поступают и со слюдяными. После этого их можно установить в схему. Из пленочных конденсаторов наиболее пригодными для звукового тракта считаются фторопластовые типов ФТ-...; К72-..., чуть хуже полистироль-ные ПМ-...; ПО; К70-...; К71-...; полипропиленовые К78-....

!!! Внимание. Не следует использовать в аудиотракте полиэтилентерефталат-ные (лавсановые) конденсаторы типа К73-..., которые портят звук самым серьезным образом.

Такая возможность позволяет выбрать наиболее приемлемый характер звучания аппарата при прослушивании музыкальных программ различных жанров и направлений. Так, например, для жесткой рок-музыки в исполнении таких групп, как ACDC, наиболее подходит тетродное включение.

Этим жанрам некоторое ухудшение разрешающей способности и прозрачности не очень вредит, тем более что оно вполне компенсируется дополнительными «драйвом» и агрессивностью звучания.

Ультралинейный режим более пригоден для шансона, в т. ч. «русского», некоторых направлений регги и джаза, поп-музыки. Вообще же, данное включение является своего рода разумным компромиссом, позволяющим получить вполне приемлемые результаты как для не очень агрессивного рока, так и целого ряда произведений классики.

И, наконец, триодное включение в наибольшей степени раскрывает свои возможности при прослушивании классической и некоторых разновидностей т. н. «акустической» музыки. Впрочем, данные рассуждения и наблюдения не следует воспринимать как догму, ведь кому как не вам знать, что вам лучше.

Коммутация режимов осуществляется переключателями SA1.1 и SA1.2. Лучше всего выбрать сдвоенный галетный, причем двухплатный, по-другому, двухгалетный. Связано это с тем, что между галетами необходимо поместить электростатический экран.

Внимание. Невыполнение этого требования может привести к возникновению самовозбуждения.

В стереофоническом варианте аппарата SA1 можно выполнить в виде пары раздельных для каждого канала двухплатных переключателей, либо воспользоваться одним четырехгалетным.

Совет. Устанавливать SA1 необходимо как можно ближе к оконечному каскаду и подсоединять его к соответствующим цепям проводниками минимально возможной длины. Лучше всего, если это будут непосредственно выводы резисторов R12—R15.

Качеству контактных групп переключателя SA1 следует уделять самое пристальное внимание, поскольку они могут стать источником сильнейших искажений. Недопустимо использовать изделия с контактными группами, изготовленными из фосфористой бронзы или меди, латуни, посеребренных металлов:

  • первый материал имеет высокое переходное сопротивление;
  • остальные не подходят в связи с их низкой механической прочностью и склонностью к окислению, а в атмосфере крупных промышленных городов еще и образованию различных химических, в первую очередь, сернистых соединений, которые являются полупроводниками.

Для первых экспериментов можно взять компоненты, у которых контактные группы выполнены из бериллиевой бронзы или имеют покрытие из сплава серебра с 40% никеля. Все эти материалы:

  • хорошо противостоят истиранию;
  • обладают неплохими электрическими характеристиками;
  • сравнительно дешевы.

Более дорогой вариант — применение переключателей с позолоченными контактами. К «элитным» изделиям принадлежат компоненты, имеющие контактные группы с покрытием из платино-иридиевого сплава либо родия (применяемый материал указывается в спецификации предприятия-изготовителя).

И, наконец, даже «самый лучший» материал окажется совершенно бесполезным, если конструкция изделия не обеспечивает надежного механического контакта, о чем тоже нельзя забывать.

В принципе, SA1 можно собрать на основе реле с герметичными контактами, для чего придется организовать систему логического управления. Ее схемное решение для опытного радиолюбителя трудностей не представляет.

Кратко о цепях, связанных с SA1. Первая галета переключателя SA1.1 связана с цепью экранной сетки оконечной лампы VL2. С ее помощью выбирается желаемая схема построения выходного каскада:

  • неподвижные контакты, закрепленные непосредственно на галете, подключены к соответствующим выводам первичной обмотки трансформатора Тр.1 и источнику анодного напряжения;
  • подвижный контакт, установленный на вращающемся роторе переключателя, через резистор R15 связан со второй сеткой лампы VL2.

В тетродном включении R15 служит токоограничивающим элементом, который предотвращает опасность электрической перегрузки сетки лампы.

При работе в ультралинейном режиме с помощью R15 в некоторой степени уравниваются напряжения на экранной сетке и аноде VL2, а также создается местная ООС умеренной глубины, что повышает линейность каскада.

Вторая секция переключателя SA1.2 связана с цепью катода той же лампы. К неподвижным контактам подключены катодные резисторы автоматического смещения R12—R14.

Примечание. В процессе наладки схемы их сопротивление подбирается таким образом, чтобы анодный ток покоя выходной лампы во всех трех включениях лежал в пределах 72—75 мА.

На принципиальной схеме указаны ориентировочные значения R12— R14. Более точно подбирать их лучше лишь после того, как новые оконечные лампы будут «прожарены» на холостом ходу в течение хотя бы 20—30 часов.

Подвижный контакт SA1.2 подключен к катоду оконечной лампы. В эту же точку подсоединен и положительный вывод электролитического конденсатора С5.

Данный элемент схемы исключает возникновение местной ООС по переменному току за счет падения напряжения на катодных резисторах. Первоначально емкость конденсатора С5 можно взять равной 1000 мкФ.

Более точное ее значение зависит от целого ряда факторов и не в последнюю очередь от характеристик ваших акустических систем. Разумеется, что заранее учесть их влияние в комплексе — задача весьма сложная, поэтому приходится доводить «до ума» аппарат по результатам контрольных прослушиваний.

Общепринятой упрощенной формулой для расчета емкости конденсатора, шунтирующего катодный резистор автоматического смещения, считается следующая:

где Fн — низшая частота заданного рабочего диапазона в Гц; Rк — сопротивление резистора автоматического смещения в Ом.

Подставив Fн = 10 Гц и Rк = 200 Ом, получаем Ск=500—1000 мкФ. После увеличения емкости С5 с 500 мкФ до 1000 мкФ бас становится более глубоким и объемным, что в принципе можно было предсказать и заранее.

Но вот наращивание ее до 2000 мкФ дает резко отрицательный эффект. В области нижнего баса появляются гул и характерное «бубнение», а мид-бас становится «зернистым». В придачу ко всему в среднечастотном регистре начинают прослушиваться крайне неприятные посторонние призвуки.

Требования к качеству данного элемента уже рассматривались при описании предварительного усилителя, но в данном случае имеется ряд нюансов.

Здесь специфика связана с большой мощностью звукового сигнала, которую развивает оконечный каскад. Автором были опробованы малогабаритные, толщиной не более мизинца электролитические конденсаторы Nippon, Rec и Rubycon емкостью 1000 мкФ с рабочим напряжением 63 В, которые звучали, во-первых, по-разному, что не удивительно, а во-вторых — как-то «плоско».

Замена их на К50-29 с теми же номиналами, но имеющими в несколько раз больший геометрический объем, привело к положительному результату. Сразу же появились столь желанные глубина, динамика, а сам бас стал более собранным, упругим и насыщенным.

Объяснение данному эффекту такое. В оконечных каскадах к катодному конденсатору прикладывается звуковой сигнал значительной мощности. Поэтому начинают сказываться:

  • и такая характеристика как максимально допустимое напряжение пульсации (ее необходимо учитывать и при построении каскадов предварительного усиления)
  • и допустимая реактивная мощность, т. е. значительное влияние оказывают тепловые процессы компонента.

Примечание. Все рассмотренные выше аспекты выбора комплектующих актуальны не только для данной конструкции.

Все каскады данного усилителя питаются от одного источника анодного напряжения. Междукаскадные развязки выполнены в виде RC-цепочек.

Они включают в себя резисторы R7 и R16, а также электролитические конденсаторы С1, СЗ. По сравнению с цепями, в которых действует звуковой сигнал, требования к качеству фильтрующих элементов проще. Здесь вполне возможно использовать конденсаторы типов К50-20, К50-26, К50-27, К50-31, К50-32, К50-35. Подойдут компоненты и более ранних разработок К50-3, К50-6, К50-7, К50-12.

На первый взгляд, не имеет никакого значения, куда именно устанавливать в цепи питания более качественный компонент, ведь он вроде бы не взаимодействует напрямую со звуковым сигналом. Но это далеко не так.

Изучим влияние оконечного каскада на предыдущие. Для более простого понимания происходящего будем считать, что междукаскадная развязка отсутствует. В процессе усиления сигнала полный анодный ток лампы делится на две составляющие: постоянную и переменную. Г

енератором последней служит сама лампа. Если бы источник анодного питания имел нулевое внутреннее сопротивление, то переменная составляющая анодного тока выходной лампы пошла бы через тот источник совершенно «прозрачно», никакого влияния на работу предыдущих ступеней не оказывая.

Однако на практике любой источник питания имеет определенное, пусть даже небольшое, внутреннее сопротивление. Поэтому часть переменной составляющей анодного тока оконечной лампы ответвляется в анодные цепи предыдущих каскадов, собранных на триодах VL1.1 и VL1.2.

При этом данная часть тока проходит через гасящие резисторы R16 и R7 (они устанавливаются, поскольку напряжение питания предварительных каскадов обычно ниже, чем выходных), анодные нагрузочные сопротивления R8 и R5, разделительные элементы R6 и С4, а также резистор утечки R10.

Аналогичное влияние оказывает второй каскад усилителя на первый, к тому же ситуация здесь усугубляется наличием гасящего резистора R16. Из-за этого значительно увеличивается эквивалентное внутреннее сопротивление источника анодного питания.

Примечание. Амплитуда тока в анодной цепи предварительного каскада во много раз меньше, чем оконечного.

Теперь рассмотрим случай, когда С1 и СЗ, обладая хорошими формальными характеристиками, имеют неудовлетворительные «звуковые» свойства.

Примечание. В такой ситуации они не только не способны эффективно выполнять свою функцию—замкнуть на общий провод помеху, но и (что гораздо хуже) могут сами генерировать дополнительную «грязь».

Распространяясь по шине питания, весь этот «мусор» проходит описанный выше путь, усиливается, и, примешиваясь к полезному сигналу, явно не способен украсить музыкальную программу.

Весьма эффективным способом борьбы с данным эффектом является раздельное питание узлов аппарата — в идеальном случае для каждого каскада отдельный выпрямитель, широко применяемый в элитной аудиоаппаратуре. В более простых устройствах приходится идти на компромисс, питая все узлы схемы от одного источника.

Теперь сделаем выводы. Чем больше усиление имеет вся схема при разорванной петле ООС, тем более качественные элементы должны использоваться в цепи питания.

Наиболее критичны к качеству комплектующих изделий первые каскады усиления, в меньшей — выходные. Поэтому для элементов развязки питания первого каскада УМЗЧ следует применять компоненты высокого, в идеальном случае «сигнального» качества.

Помимо этого в ряде случаев хороший эффект дает шунтирование электролитического конденсатора высокочастотным, подобно тому как это делают для «проходника».

Примечание. Особое внимание нужно уделить деталям, входящим в междукаскад-ную развязку схемы в случае использования кенотронных блоков питания.

Последние имеют повышенное, по сравнению с полупроводниковыми, собственное сопротивление.

Распространенное и довольно эффективное средство снижения эквивалентного сопротивления выпрямителя — применение на выходе фильтра очень большой емкости, превышающей, по крайней мере, в несколько раз необходимую для получения заданного коэффициента пульсаций.

Здесь особенно хороши импульсные конденсаторы. От аналогичных изделий общего применения их отличает повышенная энергоемкость, малое последовательное сопротивление (ESR) и способность отдавать большие импульсные токи.

Из конденсаторов отечественного произволства в данном применении неплохо зарекомендовали себя К50-23, чуть хуже К50-17, К50-21, К50-13. Можно воспользоваться комплектующими более ранних разработок — К50-ЗФ, К50И-3, К50И-1.

Поэтому не случайно уделено столько внимания освещению процессов, происходящих в цепях питания схемы. Остается добавить, что рассмотренные здесь вопросы актуальны и справедливы применительно не только к ламповой звукоусилительной технике, но и к полупроводниковой.

В последнем случае ситуация осложняется из-за больших токов, действующих здесь, которые в десятки, сотни, а порой и в тысячи раз превосходят таковые в ламповой аппаратуре.

Остальные элементы, входящие в цепь питания данной конструкции и показанные на принципиальной схеме (рис. 2), содержат выключатель SA2 и резисторы R17, R18. Остановимся на их назначении. С помощью SA2 разрывается цепь подачи анодного питания. Это необходимо в трех случаях:

  • во-первых, в момент первоначального включения усилителя в сеть, когда катоды ламп еще не успели в достаточной степени прогреться. Подача полного анодного напряжения в этот момент чревата пробоем в лампе и/или разрушением катода;
  • во-вторых, пользоваться выключателем SA2 приходится, и делать это нужно обязательно, в момент перехода с одной схемы оконечного каскада к иной. Снятие анодного питания резко снижает интенсивность переходных процессов, что гарантировано защитит. АС от выхода из строя во время этой операции;
  • в-третьих, данный элемент необходим для организации т. н. дежурного режима Standby.

Этот режим сводится к следующему. В первые секунды после подачи напряжения накала система подогреватель-катод испытывает значительные электрические и механические нагрузки. Первые обусловлены низким сопротивлением холодной нити накала, а вторые — тепловыми деформациями, возникающими во время разогрева катода.

Разумеется, включения-выключения накала отрицательно сказываются на долговечности лампы. Поэтому в перерывах прослушивания продолжительностью до нескольких часов усилитель лучше не выключать.

С другой стороны, держать полностью подготовленным аппарат в течение 2—3 часов неприемлемо как по экономическим соображениям (неоправданно повышенный расход электроэнергии и опять же снижение ресурса ламп за счет износа катодов), так и по соображениям техники безопасности.

Поэтому при не очень длительных паузах в работе снимают только высокое анодное напряжение. Резисторы R17, R18 в режиме Standby образуют делитель анодного напряжения.

Его функция связана с тем, что работа лампы при включенном накале, но без токоотбора считается более тяжелым режимом по сравнению с номинальным и может привести к т. н. «отравлению» катода.

Для устранения этой «напасти» достаточно подать на электроды лампы напряжение, составляющее 7—15% от номинального. К самим R17, R18 каких-либо особенных специфических требований не предъявляется.

Блок питания для первоначальных экспериментов может представлять собой простейший полупроводниковый выпрямитель с емкостным фильтром.

Он должен обеспечивать выходной ток не менее 120 мА в монофоническом варианте аппарата при напряжении 290 В. В дальнейшем желательно собрать блок питания с 4-кратным запасом по мощности.

Совет: Для сглаживания пульсаций лучше всего подойдет CLC-фильтр, причем выходную емкость полезно увеличить до 1000—1500 мкФ на каждый канал.

В случае построения выпрямителя на полупроводниковых приборах предпочтение следует отдать высокочастотным диодам с большой площадью кристалла. Сами вентили можно зашунтировать слюдяными конденсаторами емкостью несколько тысяч пикофарад. Еще лучше собрать кенотронный выпрямитель. По цепи накала один канал усилителя потребляет ток около 1,5 А, хотя запас до 1,8—2 А, конечно, не помешает.

Схемы цепей питания подогревателей ламп — стандартные, с применением обычных противофоновых мер. В идеальном случае это использование постоянного стабилизированного напряжения.

Изготовление трансформаторов

Выходной трансформатор выполнен на базе серийного «сетевика» типа ТПП-286У производства Николаевского (Украина) трансформаторного завода. Такие же типоразмеры, конструктивные элементы и габариты имеют изделия серий ТПП 283—ТПП 289.

Все эти трансформаторы собраны на основе магнитопровода ШЛМ 25x40. Его конструктивные характеристики: сечение центрального керна — 10 см2, средняя длина магнитной силовой линии — 16 см, размеры окна 15x45 мм, толщина ст. ленты 0,35 мм. Во избежание насыщения сердечника под воздействием постоянного подмагничивания его собирают с зазором 0,25 мм.

Совет: При сборке стереофонического варианта усилителя постарайтесь найти трансформаторы из одной партии или, по крайней мере, с одинаковой датой выпуска. Это во многом гарантирует идентичность электрических характеристик магнитопроводов.

Каркас катушки трансформаторов серийного трансформатора имеет ширину 39 мм и глубину 13 мм.

Перед началом намотки с помощью напильника необходимо придать ему правильную геометрическую форму, в первую очередь, вывести прямые углы окна каркаса.

В противном случае, необходимое количество провода может и не вместиться. После этого следует прорезать до наружной поверхности дна те щели в щечках каркаса, через которые проходят выводы 1,2.а—2.6 и 3. Остается удалить заусеницы и слегка закруглить кромки прорезей, предназначенных для выводов обмоток, во избежание обрыва провода.

Анодная обмотка содержит 3000 витков, разделенных на 6 равных секций по 500 витков. Каждая из секций обмотки I выполнена в 5 слоев по 100 витков.

От 1300-го витка сделан отвод 7, который используется в ультралинейном режиме и обеспечивает коэффициент включения р=0,43. Вторичная обмотка состоит из пяти однослойных секций по 32 витка, общее количество витков — 160.

Рис. 3. Схема расположения обмоток и электрических соединений между их секциями.

Схема расположения обмоток и электрических соединений между их секциями показана на рис. 3. Указанное соотношение числа витков обеспечивает оптимальное согласование выходной лампы с нагрузкой сопротивлением 8 Ом. В

ыбор такого варианта не случаен, т. к. большая часть акустических систем высокой чувствительности имеет именно такое сопротивление.

Примечание. Для получения удовлетворительного звучания данный усилитель должен эксплуатироваться с АС чувствительностью не ниже 92 дБ/Вт/м.

Характерной особенностью конструкции катушки данного выходного трансформатора является его намотка двумя сложенными проводами. Выполнение обмоток сигнальных трансформаторов, особенно входных и междуламповых, жгутом из нескольких сложенных вместе проводов или литцендратом особой новинки не представляет и встречается сравнительно часто.

Гораздо реже подобная намотка применяется в мощных выходных трансформаторах. Таким приемом в некоторых своих моделях пользуются создатель торговых марок Audio Note и Kondo Хирояши Кондо и Сусуму Сакума — основатель «культовой» фирмы Tamura.

В рассматриваемой конструкции применение двух параллельных обмоточных проводов объясняется следующим образом:

  • с одной стороны, проводник обладает свойством направленности, поэтому на качество звука влияет «полярность» его подключения;
  • с другой стороны, катушка выходного трансформатора относится к числу весьма ответственных и трудоемких узлов ламповых усилителей.

Примечание. Вместе с тем, сразу же угадать правильное направление включения провода, а тем более быть в этом абсолютно уверенным, практически невозможно. Серия же подобных экспериментов — занятие продолжительное, крайне трудоемкое и дорогостоящее.

Учитывая, что амплитуда переменного напряжения, действующего в анодной обмотке выходного трансформатора, соизмерима с величиной анодного питания, а наиболее критичны к направлению включения проводов именно малосигнальные цепи, в которых одновременно действует и постоянный ток, было решено воспользоваться предложением В. И. Горюнова. Эта идея была опубликована в [Горюнов В. Письмо 1, «А если в параллель?» «Радиохобби» №6/2000, с. 42].

Дополнительным аргументом, говорящим в пользу данной конструкции, можно считать и тот факт, что при использовании двух проводов удается сэкономить 7—10% площади окна сердечника по сравнению со случаем, когда применяется один проводник сечением, равным суммарному, но большего диаметра. Для выполнения первичной обмотки выбран провод ПЭТВ-1 00,16 мм.

Технологически намотка катушки трансформатора производится следующим образом. Вначале с катушки с проводом на пустой барабан перематывается примерно половина, после чего можно приступать к работе. Использование такого метода, а не применение двух уже готовых бухт:

  • во-первых, обеспечивает заведомое получение встречно-парал-лельного включения;
  • во-вторых, это гарантирует однородность химического состава и кристаллической структуры материала обоих проводников.

В процессе работы необходимо внимательно следить за тем, чтобы провода ложились ровными параллельными рядами и ни в коем случае нигде не пересекались. Пример правильной намотки катушки показан на рис. 4.

Рис. 4. Пример правильной намотки катушки.

На нем провода, которые относятся к одному витку, выделены белым/ черным фоном. Между слоями анодной обмотки проложена изоляция в виде одного слоя бумаги толщиной 10—15 мкм от мощных т. н. «косинусных» конденсаторов. Активное сопротивление правильно выполненной первичной обмотки составляет около 220 Ом между выводами 1-14.

Примечание. Масло, которым пропитана такая бумага, смущать не должно, т. к. оно является отличным диэлектриком и, к тому же, прекрасно растворяется в парафине и/или техническом воске, нисколько не мешая нормальному ходу «проварки» катушки.

Рис. 5. Схемы расположения выводов секций обмоток на стандартном каркасе от ТПП: а — первичной; б — вторичной.

Вторичная обмотка выполняется также двойным проводом марки ПЭВ-1 0,5 мм. Междуобмоточная изоляция — комбинированная трехслойная.

Нижний и верхний слой из провощенной кабельной бумаги толщиной 0,08 мм. Не случится большой беды, если эта бумага будет пропитана трансформаторным или конденсаторным минеральным маслом. Внутренний слой — фторопластовая лента толщиной 50 мкм.

Последняя секция первичной обмотки изолируется двумя слоями фторопласта и одним электротехнического картона толщиной 0,3—0,4 мм. Схема расположения выводов секций обмоток на стандартном каркасе от ТПП показана на рис. 5.

Римской цифрой I указано первоначальное направление укладки проводов, а II — направление вращения каркаса катушки в процессе намотки. После намотки катушки и полной сборки всего трансформатора его следует целиком пропитать парафином либо техническим воском.

Резюме

При использовании выходного трансформатора рекомендованной конструкции усилитель имеет следующие характеристики: максимальная выходная мощность 4—6 Вт при коэффициенте нелинейных искажений 2,5—6% в зависимости от режима работы оконечного каскада. Частотный диапазон по уровню 1,5 дБ не уже 40 Гц — 22 кГц вне зависимости от схемы включения выходной лампы.

Номинальная чувствительность аппарата составляет приблизительно 0,11 В при работе оконечного каскада в тетродном и ультралинейном режимах, в триодном снижается до 0,2—0,23 В. Все параметры приведены для случая, когда схема не охвачена петлей общей ООС.

Предварительная настройка правильно собранного из заведомо исправных деталей усилителя сложностей не вызывает. Он обычно сразу же начинает работать.

Желательно проверить режимы ламп по постоянному току и при необходимости подкорректировать их. Целесообразно (при наличии осциллографа) убедиться в отсутствии самовозбуждения схемы.

После этого усилителю дают «прогреться» в течение 30—40 часов без подачи полезного сигнала на его вход. Данную операцию можно разбить на несколько этапов; здесь более важна суммарная наработка. В ходе этой процедуры происходит окончательное формирование компонентов, входящих в состав схемы, и принебрегать ею не следует.

Это явление объясняется просто: ориентация магнитных доменов материала сердечника трансформатора и упорядочение структуры проводников его катушки не может произойти мгновенно вследствие наличия «памяти» у металлов.

После предварительного «прогрева» аппарата начинается самый интересный этап работы — доводка изделия до кондиции «наивысшего предела». Поэтому столь подробное описание требований, предъявляемых к деталям, изучение методики их подбора и т. д. не случайно.

На примере предложенного усилителя хорошо видно, что, несмотря на кажущуюся простоту схемы, при построении аудиотехники имеется немало «подводных камней». Желающие могут попробовать «поиграть» с режимами работы триодов предварительных каскадов.

Сохраняя прежнюю величину напряжения анодного питания, изменением сопротивления резисторов в цепях катода и анода можно получить звучание всего аппарата от «махрово-лампового» до «плоско-транзисторного».

Совет. «Свежеиспеченным» выходным трансформаторам (особенно четко данный эффект выражен у однотактных аппаратов) необходимо дать наработать хотя бы 25—30 часов, только после этого они начинают «просыпаться».

На определенном этапе работы вы почувствуете, что начал «играть» каждый элемент и/или проводок, начнете понимать влияние применяемых материалов, увидите зависимость полученных результатов от общей компоновки устройства.

Резюмируя изложенное выше, можно сказать: простое повторение конструкций по описаниям, приведенным в различной литературе, обеспечивает получение звучания только некоторого «начального» уровня, который может быть менее или более высоким. Использование же полного потенциала, заложенного в ту или иную схему, зависит только от ваших способностей, вкуса и интуиции.

Литература: Сухов Н. Е. - Лучшие конструкции УНЧ и сабвуферов своими руками.

Классические усилители класса ЗЕН вроде бы уже давно в прошлом, но радиолюбители в последнее время часто воспроизводят подобные схемы. Данный класс усилителей имеет превосходные частотно-динамические показатели. Знаменитый усилитель Марка Хьюстона дает отличный звук, хотя в некоторых своих роликах эту схему неоднократно рекомендовал не повторять.

Но с использованием хороших современных комплектующих картина сразу улучшается. Получается однотактный усилитель класса А, в котором усилительным элементом является достаточно мощный полевой транзистор. Мощность усилителя достигает до 5 ватт, думайте это мало? наоборот для усилителей класса А такая мощность очень велика. Желающие развеять сомнения могут собрать схему самостоятельно и убедиться.

Единственный недостаток схемы, как и всякого усилителя класса А – низкий КПД, величина которого составляет максимум 15-20%. Следовательно остаток первоначальной энергии расходуется на нагревание транзистора и ограничительного резистора.

Эту схему справедливо называют усилителем без деталей, так как ее элементная база содержит всего несколько компонентов, хотя несмотря на это придется много времени уделить магазинам электроники, чтобы их раздобыть. Основу работы понять нетрудно.

Самый «нагреваемый» элемент в схеме – резистор, расположенный на плюсовой шине, который рассеивает 60-65% суммарной мощности, выделяя тепло, поэтому его следует брать большой мощности, порядка 40 ватт. Используются полипропиленовый конденсатор и пленочный конденсатор параллельно выходному электролиту на 10 мкФ.


Усилитель настраивается переменным резистором на 100 кОм, задающим на затворе полевого транзистора напряжение смещения. Его рекомендуется взять многооборотным, поскольку даже незначительное отклонение от нужного сопротивления может привести к ненормальной работе усилителя мощности в целом.

Номинал резистора сопротивлением 15 Ом может на 5 Ом отклоняться в большую или меньшую сторону, но это не критично. Его эффективная мощность должна составлять не менее 40 Ватт, ибо основная часть начальной мощности (около 65%) рассеивается на этом резисторе в виде ненужного тепла, а остальное на транзисторе. Все остальные компоненты в схеме не перегреваются.

Силовым элементом, который также и является усилительным элементом является полевой транзистор. Его можно брать и низковольтным и высоковольтным. Если будете использовать низковольтные полевые транзисторы, то подойдут транзисторы серии IRFZ20, IRFZ40, IRFZ44, IRFZ46 и т.д.. А если будете использовать высоковольтные, что более предпочтительнее, то советую брать хотя бы на 200-250 Вольт.

В моем варианте использован полевой транзистор серии IRF630, можно заменить и на IRF640, который тоже отлично порекомендовал себя. Емкость входного конденсатора не принципиальна, может отклонятся в ту или иную сторону на 50%. Можно использовать конденсаторы пленочного типа, с емкостью от 0,1 мкФ до 2 мкФ.

Если на выходе поставить пленочный конденсатор емкостью 5 мкФ вместо 10 мкФ, качество работы усилителя не страдает от этого.


Выходной электролит желательно подобрать на напряжение 25 Вольт, но в принципе подойдет на 16 В. Напряжение на плюсе этого конденсатора должно быть 12 Вольт относительно земли.


Полевой ключ обязательно устанавливается на теплоотвод, возможно для схемы потребуется принудительный обдув, поскольку резистор очень сильно нагревается (на нем без шуток можно сварить чашечку кофе).

Питать такой усилитель от не стабилизированных источников питания крайне не рекомендую.


Прежде всего, разрешите поблагодарить радиолюбителей, приславших свои отзывы в ответ на публикации моих статей в журналах и Интернете. Подавляющее большинство удовлетворено звучанием усилителей и практически ни у кого не возникло особых трудностей при повторении описанных конструкций.

Если Вы помните, то в статье "Однотактный ламповый…, возвращаясь к напечатанному" я обещал привести описания и схемы усилителей, в выходных каскадах которых используются триоды. С удовольствием выполняю своё обещание.

Вначале несколько общих моментов, позволяющих прояснить выбор схемотехники усилителей, о которых я буду рассказывать, применяемых в них радиодеталей и т.д.

Ассортимент прямонакальных ламп, к тому же относительно доступных, ограничивается несколькими типами. Это 300B, 2А3, 6С4С, 6В4G, ГМ70. Выбор триодов косвенного накала, в основном предназначенных для стабилизаторов напряжения, тоже не очень большой. Это 6С19П, 6С41С, 6С33С, а также двойные триоды 6Н5С и 6Н13С. Несмотря на то, что есть ряд однотактных конструкций на лампах 6Н5С, 6Н13С, нужно отметить, что вольт амперные характеристики (ВАХ) этих ламп менее линейны, а коэффициент нелинейных искажений (КНИ) высок (достигает 10% при номинальной мощности и соотношении Ra/Ri=4), в то время, как у 6С19П, 6С41С, 6С33С он не превышает 3% при сходных условиях. Поэтому 6Н5С, 6Н13С лучше применять в двухтактных каскадах.

Каждая из перечисленных ламп имеет своё неповторимое звучание, поэтому в двух словах очень трудно охарактеризовать его. Я изложу своё восприятие, а соглашаться с ним или нет, Ваше право.

ГМ70 - широта и масштабность. На этой лампе можно создать усилитель с выходной мощностью более 20Вт!!! Напряжение на аноде лампы может доходить до 1000 вольт, ток анода - до 125ма, поэтому выходные трансформаторы должны иметь высокую электрическую прочность (примерно 3 киловольта). Звучание очень мощное и, как мне кажется, немного прямолинейное. Мелкие нюансы музыкального произведения как бы подавлены этой мощью и напором, а мне нравится более деликатное звучание. В общем - на любителя.

2А3, 6С4С - очень красивое, детальное и певучее звучание. Я бы назвал его "уютным и домашним", но вместе с тем - точным. Лампы представляют собой двуханодные конструкции с общей перемычкой и отличаются напряжением и током накала. У 6С4С нити накала внутри баллона соединены последовательно, а у 2А3 параллельно. Как Вы понимаете, это влияет на уровень фона. В случае применения 2А3 можно питать цепь накала переменным током, а вот в случае применения 6С4С - лучше постоянным.

6B4G - западный аналог 6С4С. Отличается чуть более аналитичным звучанием. Поскольку 6С4С и 6B4G имеют одинаковую цоколёвку, то можно выявить свои предпочтения путём простой замены одной лампы на другую. Кстати, Саратовский "Рефлектор" выпускает и одноанодную версию с такими же ВАХ и параметрами.

300B - считается "королевой" прямонакальных триодов. По моему мнению, лампа занимает промежуточное положение между ГМ70 с одной стороны, и 2А3, 6С4С, 6B4G с другой, сочетая (в разумной степени) достоинства этих двух типов ламп. Судите сами. Выходная мощность однотактного усилителя на лампе 300B составляет 8,0Вт, против 2,5-3,0Вт у 2А3 и 6С4С, при достаточно детальном и наполненном звучании.

К сожалению, звучание прямонакальных триодов, особенно это относится к лампе 300B, очень сильно зависит от года выпуска и производителя. Мне удалось прослушать несколько современных усилителей на этой лампе. Мягко говоря, я был удивлён и разочарован. Классическую музыку они воспроизводили без проблем, а вот современную и динамичную, невыразительно и тоскливо. Причина (с моей точки зрения) в том, что лампы 300В были включены в режиме с автоматическим смещением, а эта лампа звучит лучше всего с фиксированным. И лишь один из усилителей показал достойное звучание. Мне не разрешили снять кожух (очевидно разработчик боялся разглашения своих фирменных секретов), но, по его словам, лампы 300B были импортные, 1958 года выпуска, и смещение было фиксированным. Усилитель прекрасно справлялся с любым музыкальным материалом, обеспечивая полноценное звучание.

6С19П - из семейства триодов с косвенным накалом, самая маломощная (Pa=11Вт). Зарубежных аналогов - нет. Поэтому при применении одной такой лампы в усилителе, приходится довольствоваться тремя ваттами выходной мощности. А вот если установить две лампы, включив их параллельно, выходная мощность возрастёт до 6Вт. Звучание достаточно красивое и детальное, поэтому смело можно применять эти приборы в выходных каскадах усилителей. Естественно, в этом случае нужно подбирать лампы по парам или принимать меры по выравниванию их параметров.

6С41С - тоже триод с косвенным накалом (Pa=25Вт), имеет приблизительный зарубежный аналог EC360, причём с октальным цоколем. В Интернете на различных форумах мне приходилось встречать самые разные оценки звучания этой лампы, причём абсолютно противоположные. Не буду цитировать авторов этих высказываний, так как по моему мнению, большинство из них ничего не делали на этом триоде, поскольку ни режимов работы, ни схем включения никто не обсуждал. Мой опыт применения лампы 6С41С в выходном каскаде однотактного лампового усилителя, а также опыт А. И. Манакова, Д. Андреева, В. А. Стародубцева, позволяет сказать, что 6С41С - великолепно звучащая лампа, причём с любым типом смещения. Отличный, хорошо артикулированный бас и очень объёмная и детальная звукопередача - признаки звучания 6С41С. Кроме этого, вы удивитесь, мощность однотактного каскада на ней составляет около 7 ватт! Звучание 6С41С чем-то похоже на 300В с фиксированным смещением, причём не из самых плохих экземпляров. Но лампа 300В немного проигрывает лампе 6С41С (это не только моё мнение) в динамике. Недостатками чисто конструктивного характера, можно считать необходимость покупки специальных (не дешёвых) ламповых панелек и большой ток накала. Некоторые конструкторы так же считают недостатком большее время "вхождения в режим" (примерно 20-30 минут), по сравнению с прямонакальными лампами. Однако я не считаю этот факт недостатком, скорее особенностью, потому что любой ламповый усилитель начинает звучать лучше после 20-30 минутного прогрева. Такие очевидные достоинства, как отличное звучание, высокая выходная мощность, отсутствие проблем с фоном, присущих прямонакальным лампам, более простой выходной трансформатор (достаточно Ra=800ом) из-за низкого внутреннего сопротивления лампы (что тоже хорошо) и т.д. - с лихвой компенсируют эти недостатки.

6С33С (6П18С) - очень мощный триод косвенного накала (Pa=60Вт). Западных аналогов не имеет. Лампа уже давно применяется в усилителях, много схем опубликовано в различных изданиях и Интернете. Нужно сказать, что этот прибор лучше всего использовать в режиме с автоматическим смещением из-за временной и температурной нестабильности и склонности к саморазогреву. Звучание лампы в однотактном усилителе я бы охарактеризовал как несколько приземлённое и тяжеловесное, с отсутствием воздуха, но это лишь моё мнение, поэтому выбор я оставляю за Вами. Подчёркиваю, речь идёт об однотактном ламповом усилителе с выходным трансформатором. У А. Клячина дома я слушал усилитель на 6С33С, выполненный по схеме без выходных трансформаторов (OTL), так вот, тот усилитель звучал отлично.

Выходная мощность усилителя при применении 6С33С (6П18С) составит около 12Вт. Лампа ещё более длительное время "входит в режим", по сравнению с 6С41С.

Теперь немного поговорим о выходной мощности вообще. Для анализа я позволю себе ввести термин "комфортная мощность". Это, как правило, мощность, на которой аппарат работает длительное время, звучание его не раздражает и позволяет обеспечить наиболее выразительное исполнение всех нюансов музыкального произведения. Так вот, оказалось, что для меня в комнате площадью 18 квадратных метров, "комфортная мощность" составила около 0,5Вт на канал. Подавляющее большинство моих друзей, имеющих однотактные ламповые усилители, подтвердили этот факт. У кого-то было 0,4Вт на канал, у кого-то 0,7Вт на канал, в целом, цифры были похожи.

Чувствуете, к чему я клоню? Учитывая, что максимальная выходная мощность на канал в 2,5-3,0Вт для наших квартир более чем достаточна, а также большую дефицитность и дороговизну хороших ламп 300B, выбор пал на применение в выходном каскаде прямонакальных триодов 6С4С, 2А3 или 6B4G. Если же Вам нужен усилитель мощнее, примените триоды косвенного накала 6С19П, 6С41С.

Идём дальше. Одним из недостатков триодов принято считать большое напряжение раскачки. Рассмотрим поподробнее этот момент. Открываем нашу любимую программу SE Amp CAD и моделируем каскад на лампе 6B4. При напряжении питания около 300 вольт и токе 55ма выходная мощность при применении трансформатора с Ra=4ком составит 2,44Вт при напряжении на входе около 40 вольт. Глупо было бы не учитывать и тот факт, что выходное напряжение современных CD проигрывателей с ЦАПами дельта-сигма и операционными усилителями на аналоговых выходах составляет 2,0 вольта номинально (мой Rotel RCD-02S имеет выходное сопротивление 100ом и номинальное выходное напряжение 2,0 вольта, соответственно амплитудное - 2,8 вольта). Поэтому 40 вольт для раскачки выходного триода можно получить от простого предварительного каскада на резисторах, применив лампу с нужным Вам коэффициентом усиления. В моём случае этому условию полностью удовлетворяют лампы 6С5С, 6С2С или 6Н8С.

Они очень линейны и имеют глубокий раскрыв анодных характеристик при смещении на сетке вплоть до -24 вольт. Кроме этого данные типы ламп прекрасно подходят для работы с прямонакальными триодами взаимно компенсируя искажения друг друга.

Если же выходное напряжение вашего источника сигнала небольшое, то можно поступить следующим образом. Во-первых, можно применить лампу с большим коэффициентом усиления, например 6Н9С, 6Н2П, ЕСС83, E41CC. Во-вторых, применить разделительный трансформатор с коэффициентом 1:2. В-третьих, использовать в качестве лампы предварительного каскада пентод (тетрод). Противникам применения пентодов могу сказать, что лучшие образцы однотактных ламповых усилителей прошлого века, имели именно пентод во входном каскаде, а их звучание до сих пор считается эталонным. Чуть ниже я приведу схемы предварительных ламповых каскадов на пентоде и схему, в которой используется разделительный трансформатор.

Переходим к схеме на рис.1. Используем её как базовую, и путём применения различных ламп и изменения режимов их работы, попытаемся создать аппарат, соответствующий Вашим конкретным вкусам.

Как видите, схема очень проста, и состоит всего из двух каскадов, предварительного и оконечного. Я всегда придерживаюсь принципа минимально возможного количества каскадов усиления, так как добавление лишних элементов на пути сигнала приводит к ухудшению звучания.

Предварительный каскад усиления - резистивный. Поскольку расчёты каскада на резисторах есть практически в любой литературе и Интернете, я их не привожу. Считаю, что в нашем случае полезнее будет сказать о звучании ламп предварительного усилителя. При обсуждении схемы усилителя с А. И. Манаковым, им была предложена лампа 6С5С, как наиболее линейная, имеющая цилиндрическую конструкцию электродной системы. На втором месте - 6С2С. Если Вы откроете справочник, то увидите, что параметры этих ламп практически одинаковы, чего не скажешь о внутренней конструкции. Этим объясняется и разница в звучании. Несмотря на индивидуальные особенности (а они есть), обе лампы звучат очень хорошо. Недостатков я не заметил (один триод в баллоне я не считаю недостатком, скорее достоинством). Предлагаю Вам попробовать оба варианта и определиться, какой из них больше нравится, тем более что переделывать ничего не нужно. Если Вы не смогли найти эти лампы, применяйте двойной триод 6Н8С (обе половинки соединяем параллельно). Особенности такого включения описаны в моей прошлой статье "Однотактный ламповый…, возвращаясь к напечатанному", поэтому повторяться не буду. Можно также использовать лампу 6Н8С без соединения половинок в параллель, в этом случае одна лампа будет работать на оба канала (экономия места налицо).

Считаю необходимым сказать Вам и ещё об одном моменте. Лампа 6С2С - это не половина лампы 6Н8С (как ошибочно считают многие "специалисты" на форумах в Интернете). Справочные данные похожи, похожа и конструкция электродной системы, однако есть и различия. За счёт большей площади анода у 6С2С, крутизна характеристики у неё выше, а реальное внутреннее сопротивление ниже, чем у половинки 6Н8С. Коэффициент усиления при этом одинаковый (около 20). Траверсы крепления электродной системы 6С2С и 6Н8С одинаковы, однако в случае 6С2С они крепят один триод, а не два. Этим объясняется практически полное отсутствие микрофонного эффекта у 6С2С. Как Вы понимаете, из-за этого разница в звучании (хоть и не очень большая) будет обязательно. То же самое нужно сказать и о лампе 6С41С, которая не является половиной лампы 6С33С, как многие считают. Посмотрите внимательно на паспортные значения параметров этих ламп, а также на вольт амперные характеристики. Понятно, что разница в звучании будет существенной.

Кроме этого, Вы должны помнить и о том, что реальный динамический коэффициент усиления каскада на резисторах всегда меньше статического коэффициента усиления конкретной применяемой лампы. Чтобы не загромождать статью формулами, можно считать, что процентов на 25. Таким образом, при применении лампы 6С5С (6С2С), динамический коэффициент усиления реального каскада составит 15-16. Этот момент всегда нужно учитывать при расчёте лампового каскада на резисторах.

Можно вместо резистора в аноде входной лампы применить дроссель. По мнению некоторых радиолюбителей, каскад с дросселем звучит лучше. К сожалению, не могу с ними согласиться. Понимаю, что вкусы у всех разные, но должен высказать своё (и не только) мнение по поводу звучания таких каскадов.


Если Вы любите слушать симфоническую или джазовую музыку, то каскад с дроссельной нагрузкой не самый лучший вариант. Он звучит резко, я бы даже сказал - раздражающе. Очень сильно подчёркиваются обертоны струнных и духовых инструментов. Тростевые инструменты (саксофон и т.д.) звучат неестественно, с какими то неприятными призвуками. Если у Вас есть возможность послушать оба каскада (резистивный и дроссельный) одновременно (естественно с одним и тем же оконечным каскадом), то поставьте хорошую запись Дизи Гилеспи (труба) или Дэвида Сэнборна (саксофон). Я думаю, что разницу в звучании Вы услышите сразу.

Как Вы знаете, дроссель является индуктивностью, лампа предварительного каскада (драйверная) имеет выходную ёмкость, а лампа оконечного каскада - соответственно входную. В результате мы имеем резонансный контур, настроенный на частоту, которая определяется суммой этих ёмкостей и индуктивностью дросселя. F=1/2П умножить на корень квадратный из произведения LC. Вы должны знать, что при большой индуктивности дросселя, резонанс будет перемещаться из ультразвуковой области в звуковые частоты и, несмотря на то, что контур зашунтирован внутренним сопротивлением драйверной лампы, и значительно ослаблен, он всё равно присутствует. На частоте резонанса подъём может достигать до 10Дб.


И ещё один момент. Сопротивление дросселя растёт с ростом частоты, в результате мы получаем неравномерность усиления каскада (с ростом частоты она увеличивается). Естественно, при этом удлиняется спектральный "хвост" гармоник, что не лучшим образом сказывается на звучании.

Раз уж мы заговорили о предварительных каскадах, необходимо отметить, что есть много схем, авторы которых для организации смещения применяют батарейки или аккумуляторы. Многие считают, что электрохимические источники тока в цепях смещения предпочтительнее традиционного резистора и конденсатора, пагубно влияющих на звучание. Необходимо сказать, что батарейки или аккумуляторы могут стоять как в цепи сетки, так и в цепи катода.

Мною были опробованы семь типов аккумуляторов и три типа батареек различных производителей, имеющихся в магазинах. Из ламп были опробованы следующие: 6Н1П, 6Н2П, 6С2С, 6С5С, 6Н8С, 6Н9С, 6С4П, 6Э5П. Аккумуляторы в катодных цепях предпочтительнее, так как нет необходимости в подзарядке (они заряжаются током лампы). Единственное, чтобы не было перезаряда, нужно выбирать их ёмкость не менее 20*I лампы. В моём случае я выбирал ёмкость аккумуляторов в пределах 700-1000ма/ч.

Первое впечатление было очень хорошим, однако по мере прослушивания обнаружился небольшой недостаток. По моему мнению, звучание приобретало некоторую "жёсткость" (в не зависимости от типа электрохимического источника тока), которой не было при применении резистора и конденсатора. Лучшие результаты были получены при применении NiCd аккумуляторов, причём стоящих в цепи катода, а не сетки.

Нужно, конечно, сказать и о том, что электролитические конденсаторы в катодах я применяю Black Gate Rubicon. Возможно, каскад с аккумулятором или батарейкой звучит лучше традиционного, особенно в случае применения китайских конденсаторов и резисторов плохого качества, снятых с компьютерных плат и блоков питания. У меня таких радиоэлементов нет, поэтому предлагаю Вам самим послушать оба варианта и выбрать тот, который больше понравится.

Далее сигнал через разделительный конденсатор поступает на вход оконечного каскада, выполненного на прямонакальном триоде 6С4С. Про типы разделительных конденсаторов я писал много раз, поэтому сейчас скажу только об одном нюансе. При применении во входном каскаде ламп с небольшим коэффициентом усиления, в качестве разделительного лучше всего применять конденсаторы типа ФТ-3, К-77, К-78, а вот если в качестве драйвера применить тетрод или пентод, то бумагу в масле Jensen, К40У-9, К42У-2 и т.д.

Оконечный каскад особенностей не имеет. Лампа включена в режиме с автоматическим смещением. В прошлых статьях я описывал достоинства и недостатки фиксированного и автоматического типов смещения, поэтому повторять всё заново не имеет смысла. Выбирайте сами. Скажу лишь, что при применении электролитов Black Gate (на схеме С6 и С9), разницы в звучании практически нет, а вот недостатков, присущих фиксированному смещению, гораздо меньше.

Чтобы проблем с фоном при применении 6С4С не возникло, я запитал накал постоянным током. В случае применения диодов КД226 напряжение накала под нагрузкой составляет 6 вольт. Если Вы применяете другие диоды (обязательно "быстрые"), может появиться необходимость в корректировке напряжения накала при помощи дополнительного резистора 0,3-0,5ом. И ещё один момент. У прямонакального триода катод и накал - одно и то же, поэтому соединительные провода цепей накала должны быть высокого качества (в отличие от ламп с косвенным накалом). Если Вы применяете лампу 2А3, то её накал можно запитать "переменкой", уровень фона у неё изначально ниже (повторюсь, из-за параллельного включения нитей накала у обоих триодов внутри баллона).

Нужно сказать и о том, почему я применил трансформатор с Ra=4ком. Дело в том, что многие в своих конструкциях уже применили трансформатор фирмы "Аудиоинструмент" TW6SE, а он имеет Ra=4ком. Чтобы не тратить лишних денег на покупку нового трансформатора, используйте тот, что уже есть. Конечно, лучше применить трансформатор, габаритная мощность которого 100Вт, например TW10SE, низкие частоты в этом случае будут воспроизводиться ещё лучше, но и с TW6SE вы не будете разочарованы, поскольку габаритная мощность выходного трансформатора выбирается в пределах 20*Pвых или больше.

Вообще, максимальная выходная мощность достигается при условии Ra=2Ri, где Ra - сопротивление первичной обмотки выходного трансформатора по переменному току, а Ri - внутреннее сопротивление лампы. К сожалению, в этом случае слишком велики нелинейные искажения (около 6%). Поэтому сопротивление первичной обмотки трансформатора Ra выбирают в пределах 3-5Ri (иногда до 7Ri), как компромисс между величиной нелинейных искажений и выходной мощностью. Но нужно учесть, что мощность каскада снижается линейно, а коэффициент нелинейных искажений (КНИ) по экспоненте, со всеми вытекающими последствиями, поэтому существует понятие разумной достаточности. Кроме того, чрезмерное увеличение анодной нагрузки снижает динамику каскада. В нашем случае при применении 6С4С или 2А3, с внутренним сопротивлением Ri=800ом, это условие выполняется.

Для иллюстрации вышесказанного привожу данные выходной мощности усилителя и коэффициента второй и третьей гармоники при различных значениях Ra (при 40 вольтах переменного напряжения на входе лампы, токе анода 60ма и 250 вольтах напряжения на аноде). Эти значения тока и напряжения я привёл в качестве примера совсем не случайно. В учебниках Цыкина и Войшвилло именно такие режимы рекомендуются для достижения наилучшего качества звучания.

Ra=4,0ком, Pвых=2,22Вт, 2-я гармоника 3,1%, 3-я гармоника 0,2% Ra=3,5ком, Pвых=2,4Вт, 2-я гармоника 3,4%, 3-я гармоника 0,1% Ra=3,0ком, Pвых=2,54Вт, 2-я гармоника 3,8%, 3-я гармоника 0% Ra=2,5ком, Pвых=2,7Вт, 2-я гармоника 4,4%, 3-я гармоника 0,1% Ra=2,0ком, Рвых=2,9Вт, 2я гармоника 5,3%, 3я гармоника 0,3% Надеюсь, комментарии излишни.

Ток покоя, как всегда, контролируем по падению напряжения на катодных резисторах. Если Вы примените детали, указанные на схеме, то он составит 55-60ма для лампы 6С4С и 5-6ма для лампы 6С5С.

Теперь переходим к случаям, когда входное напряжение усилителя меньше двух вольт или когда в выходном каскаде применяется лампа, требующая большого напряжения раскачки (например, 6С33С). На Рис.2 приведена схема предварительного усилителя на тетроде 6Э5П в триодном включении, а на Рис.3 в штатном тетродном включении.

Вы можете спросить, почему 6Э5П? Дело в том, что экспериментируя с различными пентодами (6Ж4, 6Ж52П и т.д.), мне не удавалось получить звучание, которое полностью меня бы удовлетворило. В некоторых случаях пропадала прозрачность, в некоторых появлялась сухость и т.д. и т.п. И только 6Э5П обеспечила необходимое качество звукопередачи. Общее впечатление - звучание очень похожее на триодное, только чуть ярче. Глубокий хорошо артикулированный бас, прозрачный верх и очень детальная середина - признаки звучания 6Э5П. Моя оценка - отлично! В любом случае, выбирать и слушать Вам, а я приведу параметры лампы в триодном и штатном включении.

Триодное включение: Ri=1,2ком; S=30ма/в; Кус=30-35. Тетродное включение: Ri=8ком; S=30ма/в; Кус=200. Ну как, впечатляет? Естественно, имея такие параметры, лампа свободно сможет "раскачать" любой триод, будь то 300В, 6С41С, 6С33С, ГМ70 и т.д.

Необходимо отметить, что широкополосные тетроды 6Э5П, 6Э6П с малым внутренним сопротивлением были "oткрыты" для аудио применения А. И. Манаковым. Они успешно применяются многими конструкторами в драйверах (триодный и тетродный режим) и в качестве выходных ламп. На этих же лампах в конце 2003 года А.И. Манаковым был разработан и резистивный ультралинейный каскад, тоже имеющий очень хорошее звучание.

Теперь рассмотрим вариант схемы с применением межкаскадного трансформатора. Достоинствами такого включения принято считать:

    максимально возможное усиление
  1. возможность согласования с любой нагрузкой
  2. высокий КПД
  3. меньшее напряжение питания каскада
  4. более динамичное звучание.

Однако не всё так гладко. Недостатками схемы являются:

  1. большие габариты и масса
  2. необходимость экранировки
  3. высокая цена
  4. высокая цена

Если эти проблемы Вас не пугают, то на Рис.4 приведена схема предварительного каскада с применением межкаскадного трансформатора, имеющего коэффициент передачи 1:2. Особенности таких каскадов многократно описаны в различных источниках, поэтому подробно рассматривать их я не считаю нужным.

Статья была бы не полной, если не привести схему усилителя, в выходном каскаде которого работает триод косвенного накала. Я выбрал 6С41С, поскольку схем с использованием этой лампы очень мало, в отличие от 6С33С.

Настоятельно рекомендую Вам попробовать эту конструкцию. Вы будете просто удивлены звучанием. По сравнению с усилителем на 6С4С или 300В, я бы охарактеризовал его как более универсальное. Усилитель одинаково хорошо и естественно воспроизводит как классическую музыку, так и современную, с большим количеством импульсных составляющих.

Схема с использованием лампы 6Э5П во входном каскаде приведена на Рис. 5. Как всегда, она достаточно проста и хорошо повторяема, поэтому у Вас не должно возникнуть проблем при изготовлении этого варианта. Вы можете попробовать разные лампы во входном каскаде, и выбрать вариант, наиболее благозвучный для Вас. Лампа 6Э5П включена триодом, поэтому чувствительность усилителя будет 1,8-2 вольта. Если этого недостаточно, примените схему на Рис.3 или Рис.4. Чувствительность усилителя в этих случаях будет 0,35-0,4В и 0,8-1,0В соответственно.

Немного скажу о выборе режимов лампы 6С41С. Напряжение анод катод составляет 165-175 вольт, при токе через лампу около 93-95ма. Это означает, что мощность рассеивания составит около 16 Вт, что в полтора раза меньше паспортного значения (то есть лампа работает в облегчённом режиме).

Смещение -70 вольт. Если Вы также посмотрите на вольт амперные характеристики, то увидите, что рабочая точка лампы находится на линейном участке. Суммарный потребляемый ток одного канала усилителя составляет около 110ма. Таким образом, если Вы делаете стерео усилитель, то в его блоке питания будет достаточно применить один кенотрон 5Ц3С (5U4G). Номинальный выпрямленный ток этого кенотрона составляет 220-230ма (справочное значение). Если же Вы решите увеличить ток (что вполне допустимо), то в блоке питания усилителя необходимо будет применить два, параллельно включённых кенотрона, или изготовить усилитель в виде двух моноблоков. Естественно, первичная обмотка выходного трансформатора тоже должна быть рассчитана на этот ток.

На форумах в Интернете я как-то видел обсуждение источника питания усилителя с применением телевизионных демпферных диодов, например 6Д22С. Должен Вас предупредить, что при использовании этих ламп звучание усилителя теряет объёмность и детальность, пропадает глубина сцены, такое впечатление, что музыканты находятся на одной линии. Мне такое звучание не подходит, но Вы сами вправе решить этот вопрос. Если нет желания делать блок питания на кенотронах, целесообразнее применить "быстрые" полупроводниковые диоды - "фасты" и "ультрафасты", рассчитанные на соответствующий ток и напряжение, шунтируя каждый из них конденсаторами К78-2 ёмкостью 0,01-0,022Мкф, для устранения коммутационных помех при переключении.

Схема блока питания аналогична схеме, приведенной на Рис.1. Поскольку накал лампы 6С41С питается переменным током, диоды Д1-Д8, а так же конденсаторы фильтра С12-С15, нужно исключить. Помните и о том, что ток накала одной лампы составляет 2,7 ампера, поэтому накальные обмотки силового трансформатора должны быть рассчитаны на него.

Катодный резистор лампы 6С41С сильно греется, поэтому его мощность рассеивания должна быть не менее 15-20Вт.

Выходной трансформатор, применённый в данной схеме, изготовлен "Аудиоинструментом" и имеет следующие параметры: Ra=1ком; Ктр=12,5; Pгаб=100Вт; I=150ма. Сопротивление первичной обмотки постоянному току - около 150ом.

Ещё лучшее качество звучания было получено при применении выходных трансформаторов, намотанных на сердечниках ОСМ-0,16, изготовленных по моей просьбе Дмитрием Андреевым, за что ему отдельное спасибо. Параметры этих трансформаторов следующие: Ra=1ком; Ктр=10,05; Pгаб=160Вт; I=200ма. Сопротивление первичной обмотки постоянному току - около 50ом. В обоих случаях смещение составило -70 вольт, а мощность рассеивания лампы 6С41С во втором случае увеличилась всего на 1Вт. Звучание приобрело ещё больший объём и детальность, расширилась полоса воспроизводимых частот (вплоть до 70kHz) и увеличилась глубина сцены.

Монтаж всех усилителей, о которых я рассказал, выполнен навесным способом, с использованием медного многожильного кабеля Kimber серии TC. Мне нравится нейтральный характер звучания этого соединителя, а также невосприимчивость его изоляции из тефлона к нагреву. Стоимость - около 30$ за метр. Но, приобретая 1 метр этого кабеля, фактически вы получаете 8 проводов по 1 метру (4 синих и 4 чёрных). Согласитесь, что 4$ за метр хорошего провода, не так уж много.

Разводка "земли" выполнена "звездой", в прошлой статье я подробно описывал этот способ. Фон переменного тока слышен только в том случае, если поднести ухо вплотную к акустической системе. Если это не так, нужно повозиться с взаимным расположением радиоэлементов. В моём случае дроссели блока питания находятся в подвале шасси, а силовой и выходные трансформаторы сверху.

Ну вот, вроде и всё. В заключении, я хотел бы поблагодарить моего друга А.И. Манакова E-mail: detector(dog)surguttel.ru за постоянные консультации и помощь в редактировании этой статьи (все схемы были лично опробованы Анатолием Иосифовичем задолго до меня), а также за присланные им лампы 6Э5П и 6С41С.

Должен сказать Вам также и о том, что особенности восприятия музыки очень индивидуальны, поэтому не стоит зацикливаться на каких-то отдельно взятых схемах или лампах. Не только прямонакальные триоды обеспечивают высококачественное звучание. И пентоды, и триоды косвенного накала при грамотном построении схемы, правильном выборе рабочей точки и режимов, ничуть не хуже. Поэтому учитесь, пробуйте, слушайте, экспериментируйте. Нельзя забывать о теории электровакуумных приборов и построения усилителей на них, чтобы не было пустых "наитий" и "откровений свыше". Только в этом случае Вы сможете создать аппарат, который будет полностью соответствовать Вашим музыкальным вкусам.

Автор схемы этого усилителя занимается конструированием высококачественной звуковоспроизводящей аппаратуры с 1963 года. По моему мнению, он немало преуспел в этом. Конструкции его имеют отличное звучание, легко повторяемы и имеют заслуженный успех даже у начинающих. Я лишь (с разрешения автора) изложу особенности его работы.

Вниманию читателей предлагается простая оригинальная схема усилителя мощности в двух вариантах. Первый – бюджетный, с автоматическим смещением выходной лампы. Второй – с фиксированным смещением от отдельной обмотки силового трансформатора.

По мнению автора схемы, вариант с фиксированным смещением отличается более глубоким и красивым звуком, хотя и вариант с автоматическим смещением вас не разочарует, позволив всем его повторившим, не узнать звучание своих любимых записей.

Рис.1 Вариант схемы А. Манакова с автосмещением выходной лампы. Выходной трансформатор фирмы “Аудиоинструмент”

Схема усилителя в варианте с автосмещением выходной лампы приведена на рис.1 Входной сигнал после регулятора громкости подается на управляющую сетку двойного триода 6Н2П.Лампа эта имеет высокий коэффициент усиления и высокое внутреннее сопротивление, что в данном случае не очень хорошо. В подробности этого я вдаваться не буду, так как об этом можно прочитать в любой радиотехнической литературе.

Основной особенностью включения лампы предварительного каскада является параллельное включение двух триодов, находящихся внутри одного баллона лампы 6Н2П. Этим достигается уменьшение внутреннего сопротивления лампы, что влечет за собой улучшение нагрузочной способности и соотношение сигнал/шум. Сопротивление нагрузки выбрано не случайно, при этом достигается компенсация коэффициента нелинейных искажений выходного каскада и высокая динамика сигнала. Конденсатор 470 мкф, шунтирующий резистор катода, позволяет устранить влияние обратной связи, уменьшающей усиление первого каскада.

Конденсатор 0,22мкф является разделительным и от его качества очень сильно зависит звук усилителя в целом. Можно применить ФТ, К71, К78 ,при желании получить более “теплое” звучание К40У-2, К40У-9, К42У-2. Не рекомендуется БМ, МБМ ввиду их утечки. Нежелательно применять К73 из-за их менее естественного звучания. Еще одно. При применении выходного трансформатора ТВЗ 1-9,емкость этого конденсатора следует уменьшить до 0,047-0,068 мкф. Дело в том, что ламповый однотактник при внешней простоте -конструкция сложная, например, емкость этого конденсатора входит в расчет амплитудно-частотной характеристики выходного каскада.

Теперь о выходном каскаде. Лампа 6П43П была выбрана не случайно. После прослушивания многих экземпляров ламп 6П14П,6П18П,6П43П было отдано предпочтение именно последней. Конструкция лампы характеризуется правильной геометрией внутренних частей, что само по себе говорит о высоком классе этого пентода. Поставьте именно эту лампу. Вы будете вознаграждены сочным и ярким звучанием, прекрасной детализацией звука и его оттенками.

Емкость конденсатора в цепи автоматического смещения можно увеличить до 1000 мкф (сравните звук), а резистором, включенным параллельно этому конденсатору, выставляется ток катода выходной лампы в пределах 50 ма (в варианте с автосмещением).

Автор использовал выходной трансформатор ТВЗ 1-9 от лампового телевизора, перебранный и “сваренный” в парафине заново, заменив бумагу в зазоре на чертежную кальку, я же использовал трансформатор TW6SE московской фирмы “Аудиоинструмент”.

По моему мнению, отличному, например, от мнения Симулкина, схема усилителя которого приведена в журнале “Радиохобби” №2 за 2003год (стр.57), никакой другой режим, кроме триодного, использовать не нужно. Рассуждения Станислава на странице 58 о пентодном включении выходной лампы для рок-музыки,ультралинейного для шансона и реггей, а триодного для классической музыки мне кажутся спорными. Эклектикой можно заниматься, но к звуку это никакого отношения не имеет. Основы построения высококачественных усилителей неизменны в течение многих десятилетий. Это:

1. Кратчайший, с наименьшими потерями, путь сигнала.

2. Высококачественные комплектующие.

3. Триодный режим выходного каскада.

Щелкать переключателем, да еще в анодной цепи, нелогично и нецелесообразно. С этим к сурдологу.


Рис. 2 Схема БП для усилителя А. Манакова на 6П43П с автосмещением

Вариант блока питания приведен на рисунке 2. Схема БП не отличается от описанных многократно и в комментариях не нуждается. Питать накал постоянным током не нужно, это приведет к ухудшению микродинамики.


Рис. 3 Вариант схемы А. Манакова с фиксированным смещением выходной лампы.

Для варианта усилителя с фиксированным смещением выходной лампы, схема которого приведена на рис. З, в блок питания добавляется дополнительный источник напряжения смещения, схема которого дана на рис.4. Подстроечным резистором R2 выставляется напряжение 0,04-0,05 вольт в контрольной точке К.Т. на схеме усилителя рис.3.


Рис. 4 Схема БП для варианта с фиксированным смещением.

В заключении привожу параметры усилителя при фиксированном смещении, измеренные А. Манаковым.

Р вых =2,5 Вт при КНИ=2-3% на частоте 1000 Гц. При Рвых=2,2 Вт КНИ=0,8-1% При использовании ТВЗ 1-9 частотный диапазон с 35-40 Гц до 18-19 кГц при неравномерности 1,5-2,0 дБ. (Зависит от качества исполнения ТВЗ 1-9). При использовании TW6SE фирмы “Аудиоинструмент”, диапазон частот еще шире. Более подробно об изделиях этой фирмы можно узнать по ссылке на сайте моего хорошего друга Михаила Торопкина www.metaleater.narod.ru

Пусть вас не пугает невысокая выходная мощность – в комплекте с акустикой, чувствительностью от 90 дБ, 2-З Вт вполне достаточно.

В дальнейшем предполагается ознакомить читателей со многими схемами А.Манакова, отличающимися простотой и оригинальностью, а так же прекрасным звуком.

29 комментариев: Высококачественный однотактный усилитель мощности Манакова