07.06.2024

Рекомбинация наследственного материала в генотипе. комбинативная изменчивость. Кроссинговер. Генетический контроль рекомбинации. Факторы, влияющие на кроссинговер Рекомбинация генов, её медицинское и эволюционное значение



Открытие кроссинговера. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцеплено - группой.

Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции.

Генетический анализ кроссинговера.

О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами.

Рассмотрим один из классических опытов Моргана на дрозофилы, позволивший ему доказать, что гены расположены в хромосомах в определенном порядке.

У дрозофилы рецессивный ген черной окраски тела обозначается b, а его доминантная аллель, определяющая дикую серую окраску, - b+, ген рудиментарных крыльев - vg, нормальных - vg+. При скрещивании мух, различающихся по двум парам сцепленных признаков, серых с рудиментарными крыльями b+vg½½b+vg и черных с нормальными крыльями bvg+½½bvg+ - гибриды F1 b+vg½½ bvg+ серые с нормальными крыльями.

На рисунке представлены два анализирующих скрещивания: в одном дигетерозиготой является самец, в другом - самка. Если гибридные самцы скрещиваются с самками, гомозиготными по обоим рецессивным генам (♀bvg½½bvg ♂ Х b+vg½½bvg+), то в потомстве получается расщепление в отношении 1 серотелая муха с рудиментарными крыльями: 1 чернотелая с нормальными крыльями. Следовательно, данная дигетерозигота образует только два сорта гамет (b+vg и b+vg) вместо четырех, причем сочетание генов, в гаметах самца соответствует тому, которое было у его родителей. Исходя из указанного расщепления, следует предположить, что у самца не происходит обмен участками гомологичных хромосом. Действительно, у самцов дрозофилы как в аутосомах, так и в половых хромосомах, кроссинговер в норме не происходит, благодаря чему наблюдается полное сцепление генов, находящихся в одной хромосоме.

Может возникнуть предположение, что серая окраска тела и рудиментарные крылья, а также черное тело и нормальные крылья - это пары признаков, наследующихся вместе вследствие плейотропного действия одного гена. Однако если взять для анализа гетерозиготных самок, а не самцов, то в Fb, наблюдается иное расщепление. Кроме родительских комбинаций признаков, появляются новые - мухи с черным телом и рудиментарными крыльями, а также с серым телом и нормальными крыльями. В этом скрещивании сцепление тех же генов нарушается за счет того, что гены в гомологичных хромосомах поменялись местами благодаря кроссинговеру.

Гаметы с хромосомами, претерпевшими кроссннговер, называют кроссоверными, а с непретерпевшими - некроссоверными. Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами, а возникшие за счет некроссоверных гамет гибрида - некроссоверными или нерекомбинантными.

Механизм кроссинговера

Мейотический перекрест.

Еще до открытия перекреста хромосом генетическими методами цитологии, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими Х-образных фигур - хиазм (z-греческая буква «хи»). В 1909 г. Ф. Янсенс высказал предположение, что хиазмы связаны с обменом участками хромосом. Впоследствии эти картины послужили дополнительным аргументом в пользу гипотезы генетического перекреста хромосом, выдвинутой Т. Морганом в 1911 г.

Механизм перекреста хромосом связан с поведением гомологичных хромосом в профазе I мейоза. Вспомним его особенности. В профазе I гомологичные хромосомы конъюгируют идентичными участками. Каждая хромосома в биваленте состоит из двух хроматид, а бивалент соответственно из четырех. Таким образом, конъюгация - единственный момент, когда может осуществляться кроссинговер между гомологичными хромосомами. Итак, кроссинговер происходит на стадии четырех хроматид и приурочен к образованию.хиазм.

Если в одном биваленте произошел не один обмен, а два и более, то в этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды.

На рисунке 50 приведена схема подобных обменов: 1) реципрокного двойного обмена между двумя несестринскими хроматидами, не дающего рекомбинаций генов, если гены-маркеры не затронуты обменом; 2) диагонального обмена, когда две сестринские хроматиды в двух разных районах одновременно вступают в одинарный перекрест с одной и той же несестринской хроматидой, а четвертая хроматида не вовлечена в обмен. В результате такого двойного обмена возникают три рекомбинантные хромосомы и одна остается нерекомбинантной (рис. 50,2,3); 3) комплементарного обмена, когда все четыре хроматиды претерпевают одинарные обмены в разных районах, две несестринские хроматнды из четырех попарно претерпевают одинарный обмен в одном месте, а две другие - в другом, вследствие чего возникают четыре рекомбинантные хромосомы (рис. 50,4). В этом случае двойные кроссоверы могут возникать как следствие одновременных одинарных обменов между хроматидами при участии в обмене трех хроматид.

До сих пор.рассматривался кроссинговер между несестринскими хроматидами. Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости.

Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе 1 мейоза при образовании гамет. Однако существует соматический или митотическии кроссинговер, который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей.

Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда, удается наблюдать синапсис гомологичных хромосом и фигуры, похожие на хиазмы, но при этом редукции числа хромосом не наблюдается.

Соматический кроссинговер может приводить к мозаичности в проявлении признаков.

Учет кроссинговера при тетрадном анализе

У высших организмов о кроссинговере, происшедшем в профазе мейоза, судят по частоте кроссоверных особей-рекомбинантов, считая, что появление их отражает соотношение кроссоверных и некроссоверных гамет.

Для прямого доказательства соответствия рекомбинантных зигот кроссоверным гаметам необходимо определять результаты кроссинговера непосредственно по гаплоидным продуктам мейоза. При этом гены должны проявлять свое действие в гаплофаза. Объектом, на котором удалось осуществить подобное исследование, явился, например, плесневой гриб (Neurospora crassa), большая часть жизненного цикла которого приходится на гаплофазу, а диплоидная фаза очень короткая.

Вскоре после оплодотворения зигота приступает к мейотическому делению, которое приводит к образованию аска - сумки гаплоидными спорами. При делениях веретено своей осью совпадает с продольной осью сумки. Поэтому продукты мейоза - споры - располагаются в сумке цепочкой. В мейозе протекают два обычных деления созревания, затем одно митотическое, в результате чего в каждой сумке образуется 8 аскоспор.

Поскольку у нейроспоры имеется возможность непосредственно определять результаты кроссинговера по продуктам мейоза, установление в этом случае характера расщепления будет прямым доказательством того, что расщепление и кроссинговер осуществляются в мейозе. Этот метод является разновидностью уже описанного тетрадного анализа, но применительно к сцепленным генам.

В случае моногибридного скрещивания ожидается расщепление по гаплоидным продуктам (спорам) в соотношении1А:1а. В асках среди 8 спор - 4 окрашенные (А) и 4 неокрашенные (а) споры, т.е. наблюдается расщепление 1: 1. При отсутствии кроссинговепа между геном и центромерой порядок расположения спор в сумке таков: ААААаааа. Если порядок аскоспор меняется, например ААааААаа, то это будет говорить о происшедшем перекресте между локусом а и центромерой.

Расположение спор будет зависеть от расхождения хромосом в первом и втором мейотических делениях. Аллели А и а могут распределиться в сумке по спорам и в ином порядке: ааААааАА, ааААААаа, ААааааАА.

В рассматриваемом случае перекрест происходит на участке между локусом данного гена и центромерой. Чем дальше ген а будет удален от центромеры, тем вероятнее перекрест и, следовательно, больше будет кроссоверных асков. Если перекрест произойдет между дистальным концом хромосомы и геном а, то кроссоверное расположение аскоспор не будет обнаружено.

Изменение порядка спор в аске при кроссинговере между геном и центромерой возможно только в случае, если он осуществляется на стадии четырех нитей, т. е. между хроматидами. Если бы рекомбинация происходила в момент, когда каждая хромосома еще не удвоилась, порядок спор в аске не изменился бы. Следовательно, изменение порядка спор в данном случае служит доказательством того, что кроссинговер осуществляется между несестринскими хроматидами, т. е. на стадии четырех нитей.

Поэтому, говоря о механизме и генетических последствиях кроссинговера, лишь для простоты объясняют его обменом между целыми хромосомами; на самом деле обмен происходит между хроматидами. Указанные особенности нейроспоры дают возможность определить место гена в хромосоме, учитывая расщепление только по одной паре аллелей, что невозможно у диплоидных организмов, для которых нельзя провести тетрадный анализ.

Таким образом, тетрадный анализ доказывает, что как менделевское расщепление, так и кроссинговер основаны на закономерностях мейоза.

Цитологическое доказательство кроссинговера

После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютно одинаковы по величине и форме.

Крейтов и Мак-Клинток удалось получить у кукурузы форму, у которой гомологичные хромосомы различались морфологически - одна была нормальной, а другая несла утолщение на конце одного плеча, второе ее плечо было удлинено. Эти особенности в строении пары хромосом легко обнаруживались при цитологических исследованиях.

В опыте нормальная хромосома несла рецессивный ген с (неокрашенный эндосперм) и доминантный ген wx+ (крахмалистый эндосперм), измененная хромосома - доминантный ген с+ (окрашенный эндосперм) и рецессивный ген wx (восковидный эндосперм). Дигетерозиготу скрещивали с линией, имеющей морфологически нормальные хромосомы, меченные рецессивными генами с и wx. В потомстве получили как некроссоверные, так и кроссоверные зерна. При цитологическом изучении их было обнаружено, что кроссоверные зерна неизменно содержали хромосомы с обменявшимися участками: нормальной длины, но с утолщением или удлиненную без утолщения.

Таким образом, одновременно цитологически и генетически было показано, что рекомбинация генов сопровождается обменом участками гомологичных хромосом в профазе мейоза.


Мейоз — сложное деление, в результате которого образуются половые клетки (гаметы). Состоит из двух последовательных делений. Особенно сложным является первое деление мейоза (профаза I). При мейозе происходит перекомбинация генетического материала (кроссинговер, независимое расхождение целых хромосом в анафазе I и независимое расхождение хроматид в анафазе II).

В результате мейоза образуются гаплоидные клетки («nc») и возникает комбинативная изменчивость. Биологическое значение мейоза состоит в поддержании постоянства кариотипа и возникновении генетически неидентичных гамет, что определяет формирование организмов с индивидуальными особенностями. Мейоз происходит в процессе гаметогенеза (образование половых клеток) в половых железах (гонадах).

Фазы мейоза, их характеристика и значение.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
  • Фаза лептотены илилептонемы - конденсация ДНК с образованием хромосом в виде тонких нитей.
  • Зиготена илизигонема - конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.
  • Пахитена илипахинема -кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
  • Диплотена илидиплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.
  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.
  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как вмитозе .
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четырегаплоидных клетки . В тех случаях, когда мейоз сопряжён сгаметогенезом (например, у многоклеточных животных), при развитиияйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемыхредукционных тельца (абортивные дериваты первого и второго делений).

Рекомбинация генов, её медицинское и эволюционное значение.

Рекомбинация — это процесс, который обеспечивает перемешивание генов в ряду поколений. При формировании половых клеток гены, полученные от родителей, “перетасовываются”, и в каждую гамету попадает только половина родительских генов. При оплодотворении гены двух родителей случайно комбинируются в зиготе. Сочетание этих двух случайных процессов — тасовки генов в генеративных клетках и встречи гамет — обеспечивает уникальность набора генов каждого организма.

Этот процесс был открыт в начале XX в. на основе анализа результатов скрещиваний. Сейчас в изучении рекомбинации используют весь арсенал современных методов молекулярной и клеточной биологии. И тем не менее процесс остается во многом загадочным. До сих пор идут бурные дебаты о том, зачем нужна рекомбинация. Непонятно, отчего она так сложно и, казалось бы, нелогично организована. Неясно, как распределяются по геному ее горячие и холодные точки. Попытаемся ответить на эти вопросы, рассмотрев рекомбинацию в свете эволюции.

Рекомбинация — главный генератор фенотипического разнообразия, того самого, с которым оперирует естественный отбор, тех отличий между организмами, которые играют решающую роль в их борьбе за существование. Мы привыкли думать, что эти различия определяются мутациями генов. Это и верно, и неверно одновременно.

Мутации меняют гены. Ген может быть неузнаваемо испорчен мутацией, изменен с сохранением функции (синонимически) или с ее потерей. Мы должны ясно понимать, что функция каждого гена определяется его взаимодействием с другими генами. Поэтому и функцию гена, и ее изменения следует рассматривать исключительно в рамках конкретного метаболического пути или регуляторной генной сети, в которых задействованы продукты этого гена. Бессмысленный или неверный ген из одной генной сети может приобрести новый, неожиданный смысл в другой; синоним в одном контексте оказаться антонимом в другом. Таким образом, мутации меняют фенотип не сами по себе, а в сочетании с другими генами.

Разнообразие фенотипов, которое мы наблюдаем, есть воплощенное разнообразие генных сочетаний. А поскольку рекомбинация обеспечивает постоянную генерацию все новых и новых сочетаний, мы имеем полное право назвать этот замечательный механизм генератором фенотипического разнообразия.

Рекомбинация, видимо, возникла одновременно или вскоре после появления жизни. Однако на первых порах она была робкой и спорадической. Такой она и остается в мире прокариот. Бактерии иногда входят в контакт друг с другом и обмениваются генетической информацией, чаще когда их жизнь становится хуже. Но из этого не следует, что рекомбинация непременно облегчает им жизнь, повышает их приспособленность. Она дает им шанс, надежду на то, что новая комбинация генов окажется полезной.

Регулярная, запланированная и обязательная рекомбинация появилась гораздо позже, одновременно или вскоре после возникновения эукариотических клеток. В пользу этого предположения свидетельствует тот факт, что у подавляющего большинства современных эукариот рекомбинация происходит регулярно, а ее молекулярные и клеточные механизмы у самых разных организмов поразительно сходны. Сходство мы обнаруживаем и в том, что у всех них рекомбинация так или иначе связана с размножением. У эукариот, в отличие от бактерий, результаты рекомбинации проявляются не у самих организмов, а у их потомков.

Мейоз и оплодотворение обеспечивают получение организмами нового поколения эволюционно сложившегося, сбалансированного по дозам генов наследственного материала, на основе которого осуществляется развитие организма и отдельных его клеток. Благодаря этим двум механизмам в ряду поколений особей данного вида формируются определенные видовые характеристики и вид как реальная единица живой природы существует продолжительное время. Однако у разных представителей вида в силу постоянно идущего мутационного процесса один и тот же набор генов генома представлен разными их аллелями. Так как при половом размножении у многих видов в воспроизведении потомства принимают участие две особи, то совершенно очевидно, что в результате оплодотворения разные зиготы получают неодинаковый набор аллелей в их генотипах. Увеличению генотипического разнообразия представителей вида способствуют также механизмы, приводящие к перекомбинации родительских аллелей особи в ее гаметах. Действительно, если бы гаметы, образуемые организмом, были одинаковы по набору аллелей в их геноме, то у потомков одной пары организмов при раздельнополости или одного гермафродитного организма не наблюдалось бы генотипического разнообразия. В каждом новом поколении вида генотипически различными были бы лишь дети разных родителей.

Реально в природе наблюдается разнообразие потомков одних и тех же родителей. Например, родные братья и сестры различаются не только по полу, но и по другим признакам. Такие различия потомков объясняются тем, что в каждом акте оплодотворения встречаются генетически различающиеся гаметы. Механизмом,обеспечивающим разнообразие гамет, образуемых одним и тем же организмом, является мейоз, в ходе которого происходит не только уменьшение вдвое наследственного материала, попадающего в гаметы, но и эффективное перераспределение родительских аллелей между гаметами. Процессами, приводящими к перекомбинации генов и целых хромосом в половых клетках, являются Кроссинговер и расхождение бивалентов в анафазе I мейоза (см. гл. 5).

Кроссинговер. Этот процесс происходит в профазе I мейоза в то время, когда гомологичные хромосомы тесно сближены в результате конъюгации и образуют биваленты. В ходе кроссинговера осуществляется обмен соответствующими участками между взаимно переплетающимися хроматидами гомологичных хромосом (рис. 3.72). Этот процесс обеспечивает перекомбинацию отцовских и материнских аллелей генов в каждой группе сцепления. В разных предшественниках гамет Кроссинговер происходит в различных участках хромосом, в результате чего образуется большое разнообразие сочетаний родительских аллелей в хромосомах.

Рис. 3.72. Кроссинговер как источник генетического разнообразия гамет:

I - оплодотворение родительских гамет а и б с образованием зиготы в; II - гаметогенез в организме, развившемся из зиготы в ; г - кроссинговер, происходящий между гомологами в профазе I; д - клетки, образовавшиеся после 1-го мейотического деления; е, ж - клетки, образовавшиеся после 2-го деления мейоза (е - некроссоверные гаметы с исходными родительскими хромосомами; ж - кроссоверные гаметы с перекомбинацией наследственного материала в гомологичных хромосомах)

Понятно, что кроссинговер как механизм рекомбинации эффективен лишь в том случае, когда соответствующие гены отцовской и материнской хромосом представлены разными аллелями. Абсолютно идентичные группы сцепления при кроссинговере не дают новых сочетаний аллелей.

Кроссинговер происходит не только в предшественницах половых клеток при мейозе. Он наблюдается также в соматических клетках при митозе. Соматический кроссинговер описан у дрозофилы, у некоторых видов плесеней. Он осуществляется в ходе митоза между гомологичными хромосомами, однако его частота в 10 000 раз меньше частоты мейотического кроссинговера, от механизма которого он ничем не отличается. В результате митотического кроссинговера появляются клоны соматических клеток, различающихся по содержанию в них аллелей отдельных генов. Если в генотипе зиготы данный ген представлен двумя разными аллелями, то в результате соматического кроссинговера могут появиться клетки с одинаковыми либо отцовскими, либо материнскими аллелями данного гена (рис. 3.73).

Рис. 3.73. Кроссинговер в соматических клетках:

1 - соматическая клетка, в гомологичных хромосомах которой ген А представлен двумя разными аллелями (А и а); 2 - кроссинговер; 3 - результат обмена соответствующими участками между гомологичяыми хромосомами; 4 - расположение гомологов в плоскости экватора веретена деления в метафазе митоза (два варианта); 5 - образование дочерних клеток; 6 - образование гетерозитотиых по гену А клеток, сходных с материнской клеткой по набору аллелей (Аа); 7 - образование гомозиготных по гену А клеток, отличающихся от материнской клетки по набору аллелей (АА или аа)

Расхождение бивалентов в анафазе I мейоза. В метафазе I мейоза в экваториальной плоскости ахромативнового веретена выстраиваются биваленты, состоящие из одной отцовской и одной материнской хромосомы. Расхождение гомологов, которые несут разный набор аллелей генов в анафазе I мейоза, приводит к образованию гамет, отличающихся по аллельному составу отдельных групп сцепления (рис. 3.74).

Рис. 3.74. Расхождение гомологичных хромосом в анафазе I мейоза

как источник генетического разнообразия гамет:

1 -метафаза I мейоза (расположение бивалента в плоскости экватора веретена деления); 2 - анафаза I мейоза (расхождение гомологов, несущих разные аллели гена А к разным полюсам); 3 - второе мейотическое деление (образование двух типов гамет, различающихся по аллелям гена А)

Рис. 3.75. Случайный характер расположения бивалентов в метафазе (1 )

и независимое расхождение их в анафазе (2 ) первого мейотического деления

В связи с тем что ориентация бивалентов по отношению к полюсам веретена в метафазе I оказывается случайной, в анафазе I мейоза в каждом отдельном случае к разным полюсам направляется гаплоидный набор хромосом, содержащий оригинальную комбинацию родительских групп сцепления (рис. 3.75). Разнообразие гамет, обусловленное независимым поведением бивалентов, тем больше, чем больше групп сцепления в геноме данного вида. Оно может быть выражено формулой 2 n , где п - число хромосом в гаплоидном наборе. Так, у дрозофилы п = 4 и количество типов гамет, обеспечиваемое перекомбинацией родительских хромосом в них, равно 2 4 = 16. У человека п = 23, и разнообразие гамет, обусловленное этим механизмом, соответствует 2 23 , или 8388608.

Кроссинговер и процесс расхождения бивалентов в анафазе I мейоза обеспечивают эффективную рекомбинацию аллелей и групп сцепления генов в гаметах, образуемых одним организмом.

Оплодотворение. Случайная встреча разных гамет при оплодотворении приводит к тому, что среди особей вида практически невозможно появление двух генотипически одинаковых организмов. Достигаемое с помощью описанных процессов генотипическое разнообразие особей предполагает наследственные различия между ними на базе общего видового генома.

Таким образом, геном как высший уровень организации наследственного материала благодаря мейозу и оплодотворению сохраняет свои видовые характеристики. Но одновременно эти же процессы обеспечивают индивидуальные наследственные различия особей, в основе которых лежит рекомбинация генов и хромосом, т.е. комбинативную изменчивость. Комбинативная изменчивость, проявляющаяся в генотипическом разнообразии особей, повышает выживаемость вида в изменяющихся условиях его существования.