30.06.2023

Как из шима получить постоянное напряжение. ШИМ-контроллер: схема, принцип работы, управление Напряжение на выходе шим


Дорогой Бобот, не мог бы ты немного побольше рассказать об импульсах?

Хорошо, что ты попросил, дружище Бибот. Так как именно импульсы являются главными носителями информации в цифровой электронике, поэтому очень важно знать разные характеристики импульсов. Начнём, пожалуй, с одиночного импульса.

Электрический импульс - это всплеск напряжения или тока в определённом и конечном промежутке времени.

Импульс всегда имеет начало (передний фронт) и конец (спад).
Ты уже наверняка знаешь, что в цифровой электронике все сигналы могут быть представлены всего двумя уровнями напряжения: "логической единицей" и "логическим нулём". Это всего лишь условные величины напряжения. "Логической единице" приписывается высокий уровень напряжения, обычно около 2-3 вольт, "логическим нулём" считается близкое к нулю напряжение. Цифровые импульсы графически изображаются прямоугольными или трапециевидными по форме:

Главной величиной одиночного импульса является его длина. Длина импульса - это отрезок времени, в течение которого рассматриваемый логический уровень имеет одно устойчивое состояние. На рисунке латинской буквой t отмечена длина импульса высокого уровня, то есть логической "1". Длина импульса измеряется в секундах, но чаще в миллисекундах (мс), микросекундах (мкс) и даже наносекундах (нс). Одна наносекунда - это очень короткий отрезок времени!
Запомни: 1 мс = 0,001 сек.
1 мкс = 0,000001 сек
1 нс = 0,000000001 сек

Применяются также англоязычные сокращения: ms - миллисекунда, μs - микросекунда, ns - наносекунда.

За одну наносекунду я даже пикнуть не успею!
Скажи, Бобот, а что произойдёт, если импульсов будет много?

Хороший вопрос, Бибот! Чем больше импульсов, тем больше информации можно ими передать. У множества импульсов появляется много характеристик. Самая простая - частота следования импульсов.
Частота следования импульсов - это количество полных импульсов в единицу времени. За единицу времени принято брать одну секунду. Единицей измерения частоты является герц, по имени немецкого физика Генриха Герца . Один герц - это регистрация одного полного импульса за одну секунду. Если произойдёт тысяча колебаний в секунду будет 1000 герц, или сокращённо 1000 Гц, что равно 1 килогерцу, 1 кГц. Можно встретить и англоязычное сокращение: Hz - Гц. Частота обозначается буквой F .

Существуют ещё несколько характеристик, которые проявляются только при участии двух и более импульсов. Одним из таких важных параметров импульсной последовательности является период.
Период импульсов - это промежуток времени, между двумя характерными точками двух соседних импульсов. Обычно период измеряют между двух фронтов или двух спадов соседних импульсов и обозначают заглавной латинской буквой T .


Период следования импульсов напрямую связан с частотой импульсной последовательности, и его можно вычислить по формуле: T=1/F
Если длина импульса t точно равна половине периода T , то такой сигнал часто называют "меандр ".

Скважностью импульсов называется отношение периода следования импульсов к их длительности и обозначается буквой S: S=T/t Скважность - безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах. Часто в англоязычных текстах встречается термин Duty cycle, это так называемый коэффициент заполнения.
Коэффициент заполнения D является величиной, обратной скважности. Коэффициент заполнения обычно выражается в процентах и вычисляется по формуле: D=1/S

Дорогой Бобот, так много разного и интересного у простых импульсов! Но потихоньку я уже начинаю путаться.

Дружище, Бибот, это ты верно заметил, импульсы - не так уж и просты! Но осталось совсем чуть-чуть.

Если ты меня внимательно слушал, то ты мог заметить, что если увеличивать или уменьшать длину импульса и при этом на столько же уменьшать или увеличивать паузу между импульсами, то период следования импульсов и частота останется неизменной! Это очень важный факт, который нам ещё не раз понадобится в будущем.

Но сейчас ещё хочется добавить другие способы передачи информации с помощью импульсов.
Например, можно несколько импульсов объединить в группы. Такие группы с паузами определённой длины между ними называют пачками или пакетами. Генерируя разное число импульсов в группе и варьируя его, можно также передавать какую-либо информацию.


Для передачи информации в цифровой электронике (ещё её называют дискретной электроникой) можно использовать два и более проводников или каналов с разными импульсными сигналами. При этом информация передаётся с учётом определённых правил. Такой метод позволяет заметно увеличить скорость передачи информации или добавляет возможность управлением потоком информации между различными схемами.

Перечисленные возможности передачи информации с помощью импульсов могут быть использованы как сами по себе раздельно, так и в комбинации между собой.
Существуют также множество стандартов передачи информации с помощью импульсов, например I2C, SPI, CAN, USB, LPT.

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана .

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в . Он построен на базе микросхемы и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Читайте так же

ШИМ или PWM (широтно-импульсная модуляция, по-английски pulse-width modulation) – это способ управления подачей мощности к нагрузке. Управление заключается в изменении длительности импульса при постоянной частоте следования импульсов. Широтно-импульсная модуляция бывает аналоговой, цифровой, двоичной и троичной.

Применение широтно-импульсной модуляции позволяет повысить КПД электрических преобразователей, особенно это касается импульсных преобразователей, составляющих сегодня основу вторичных источников питания различных электронных аппаратов. Обратноходовые и прямоходовые однотактные, двухтактные и полумостовые, а также мостовые импульсные преобразователи управляются сегодня с участием ШИМ, касается это и резонансных преобразователей.

Широтно-импульсная модуляция позволяет регулировать яркость подсветки жидкокристаллических дисплеев сотовых телефонов, смартфонов, ноутбуков. ШИМ реализована в , в автомобильных инверторах, в зарядных устройствах и т. д. Любое зарядное устройство сегодня использует при своей работе ШИМ.

В качестве коммутационных элементов, в современных высокочастотных преобразователях, применяются биполярные и полевые транзисторы, работающие в ключевом режиме. Это значит, что часть периода транзистор полностью открыт, а часть периода - полностью закрыт.

И так как в переходных состояниях, длящихся лишь десятки наносекунд, выделяемая на ключе мощность мала, по сравнению с коммутируемой мощностью, то средняя мощность, выделяемая в виде тепла на ключе, в итоге оказывается незначительной. При этом в замкнутом состоянии сопротивление транзистора как ключа очень невелико, и падение на нем напряжения приближается к нулю.

В разомкнутом же состоянии проводимость транзистора близка к нулю, и ток через него практически не течет. Это позволяет создавать компактные преобразователи с высокой эффективностью, то есть с небольшими тепловыми потерями. А резонансные преобразователи с переключением в нуле тока ZCS (zero-current-switching) позволяют свести эти потери к минимуму.


В ШИМ-генераторах аналогового типа, управляющий сигнал формируется аналоговым компаратором, когда на инвертирующий вход компаратора, например, подается треугольный или пилообразный сигнал, а на неинвертирующий - модулирующий непрерывный сигнал.

Выходные импульсы получаются , частота их следования равна частоте пилы (или сигнала треугольной формы), а длительность положительной части импульса связана с временем, в течение которого уровень модулирующего постоянного сигнала, подаваемого на неинвертирующий вход компаратора, оказывается выше уровня сигнала пилы, который подается на инвертирующий вход. Когда напряжение пилы выше модулирующего сигнала - на выходе будет отрицательная часть импульса.

Если же пила подается на неинвертирующий вход компаратора, а модулирующий сигнал - на инвертирующий, то выходные импульсы прямоугольной формы будут иметь положительное значение тогда, когда напряжение пилы выше значения модулирующего сигнала, поданного на инвертирующий вход, а отрицательное - когда напряжение пилы ниже сигнала модулирующего. Пример аналогового формирования ШИМ - микросхема TL494, широко применяющаяся сегодня при построении импульсных блоков питания.


Цифровая ШИМ используются в двоичной цифровой технике. Выходные импульсы также принимают только одно из двух значений (включено или выключено), и средний уровень на выходе приближается к желаемому. Здесь пилообразный сигнал получается благодаря использованию N-битного счетчика.

Цифровые устройства с ШИМ работают также на постоянной частоте, обязательно превосходящей время реакции управляемого устройства, этот подход называется передискретизацией. Между фронтами тактовых импульсов, выход цифрового ШИМ остается стабильным, или на высоком, или на низком уровне, в зависимости от текущего состояния выхода цифрового компаратора, который сравнивает уровни сигналов на счетчике и приближаемый цифровой.

Выход тактуется как последовательность импульсов с состояниями 1 и 0, каждый такт состояние может сменяться или не сменяться на противоположное. Частота импульсов пропорциональна уровню приближаемого сигнала, а единицы, следующие друг за другом могут сформировать один более широкий, более продолжительный импульс.

Получаемые импульсы переменной ширины будут кратны периоду тактования, а частота будет равна 1/2NT, где T – период тактования, N – количество тактов. Здесь достижима более низкая частота по отношению к частоте тактования. Описанная схема цифровой генерации - это однобитная или двухуровневая ШИМ, импульсно-кодированная модуляция ИКМ.

Эта двухуровневая импульсно-кодированная модуляция представляет собой по сути серию импульсов с частотой 1/T, и шириной Т или 0. Для усреднения за больший промежуток времени применяется передискретизация. Высокого качества ШИМ позволяет достичь однобитная импульсно-плотностная модуляция (pulse-density-modulation), называемая также импульсно-частотной модуляцией.

При цифровой широтно-импульсной модуляции прямоугольные подимпульсы, которыми оказывается заполнен период, могут приходиться на любое место в периоде, и тогда на среднем за период значении сигнала сказывается только их количество. Так, если разделить период на 8 частей, то комбинации импульсов 11001100, 11110000, 11000101, 10101010 и т. д. дадут одинаковое среднее значение за период, тем не менее, отдельно стоящие единицы утяжеляют режим работы ключевого транзистора.

Корифеи электроники, повествуя о ШИМ, приводят такую аналогию с механикой. Если при помощи двигателя вращать тяжелый маховик, то поскольку двигатель может быть либо включен, либо выключен, то и маховик будет либо раскручиваться и продолжать вращаться, либо станет останавливаться из-за трения, когда двигатель выключен.

Но если двигатель включать на несколько секунд в минуту, то вращение маховика будет поддерживаться, благодаря инерции, на некоторой скорости. И чем дольше продолжительность включения двигателя, тем до более высокой скорости раскрутится маховик. Так и с ШИМ, на выход приходит сигнал включений и выключений (0 и 1), и в результате достигается среднее значение. Проинтегрировав напряжение импульсов по времени, получим площадь под импульсами, и эффект на рабочем органе будет тождественен работе при среднем значении напряжения.

Так работают преобразователи, где переключения происходят тысячи раз в секунду, и частоты достигают единиц мегагерц. Широко распространены специальные ШИМ-контроллеры, служащие для управления балластами энергосберегающих ламп, блоками питания, и т. д.


Отношение полной длительности периода импульса ко времени включения (положительной части импульса) называется скважностью импульса. Так, если время включения составляет 10 мкс, а период длится 100 мкс, то при частоте в 10 кГц, скважность будет равна 10, и пишут, что S = 10. Величина обратная скважности называется коэффициентом заполнения импульса, по-английски Duty cycle, или сокращенно DC.

Так, для приведенного примера DC = 0.1, поскольку 10/100 = 0.1. При широтно-импульсной модуляции, регулируя скважность импульса, то есть варьируя DC, добиваются требуемого среднего значения на выходе электронного или другого электротехнического устройства, например двигателя.

На форуме достаточно часто встречаются вопросы по реализации Широтно Импульсной Модуляции на микроконтроллерных устройствах. Я и сам очень много спрашивал по этому поводу и, разобравшись, решил облегчить труд новичкам в этой области, так как информации в сети много и рассчитана она на разработчиков разного уровня, а сам я только- только в нем разобрался и память ещё свежа.

Так как для меня самым важным было применение ШИМ именно для управления яркостью светодиодов, то именно их я и буду использовать в примерах. В качестве микроконтроллера будем использовать горячо любимый ATmega8.

Для начала вспомним, что такое ШИМ. ШИМ сигнал - это импульсный сигнал определенной частоты и скважности:

Частота, это количество периодов за одну секунду. Скважность- отношение длительности импульса к длительности периода. Можно изменять и то и другое, но для управления светодиодами достаточно управлять скважностью. На картинке выше мы видим ШИМ сигнал со скважностью 50 %, так как длительность импульса (ширина импульса) ровно половина от периода. Соответственно светодиод будет ровно половину времени во включенном состоянии и половину в выключенном. Частота ШИМ очень большая и глаз не заметит мерцания светодиода из за инерционности нашего зрения, поэтому нам будет казаться, что светодиод светится на половину яркости. Если мы изменим скважность на 75%, то яркость светодиода будет на 3 четверти от полной, а график будет выглядеть так:

Получается, что мы можем регулировать яркость светодиода от 0 до 100 %. А теперь поговорим о таком параметре ШИМ, как разрешение. Разрешение- это количество градаций (шагов) регулировки скважности, мы будем рассматривать разрешение в 256 шагов.

С параметрами вроде разобрались, теперь поговорим о том, как нам получить этот самый ШИМ от микроконтроллера. Берем остро заточенный разогретый паяльник и начинаем пытать МК, одновременно подцепившись к двум его ногам осциллографом и проверяя наличие на них сигнала нужной нам скважности. В микроконтроллерах есть аппаратная поддержка ШИМ и несколько каналов для него, в нашем случае 3. За выдачу ШИМ отвечают определенные выводы МК, в нашем случае OC2, OC1A, OC1B (15,16,17 нога в DIP корпусе). Так же для этого используются таймеры микроконтроллера, в нашем случае TC1, TC2. Так как же сконфигурировать МК для выдачи сигнала необходимой скважности? Все очень просто, для начала сконфигурируем нужные нам ноги на выход:

PORTB=0x00; DDRB=0x0E; // 0b00001110

Далее начнем конфигурировать таймеры. Для таймера TC1 нам потребуются два регистра: TCCR1A и TCCR1B. Открываем даташит и читаем как настраиваются эти регистры. Я настроил его на 8 битный сигнал ШИМ, что соответствует разрешению в 256 шагов:

TCCR1A=0xA1; TCCR1B=0x09;

Для таймера TC2 мы будем использовать регистр TCCR2=0x69;. Его настройка выглядит так:

TCCR2=0x69;

Всё, таймеры сконфигурированы. Скважность будем задавать регистрами OCR1A,OCR1B, OCR2:

Зададим требуемые скважности:

OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов

Ну и поместим инкремент и декремент этих регистров в бесконечный цикл:

While(1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }

Первая тестовая программа готова и выглядит для CVAVR она так:

#include "mega8.h" #include "delay.h" void main(void) { PORTB=0x00; DDRB=0x0E; // 0b00001110 TCCR1A=0xA1; TCCR1B=0x09; TCCR2=0x69; OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов while (1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }; }

ШИМ или в английском PWM (Pulse-Width Modulation) широтно-импульсная модуляция - способ используемый для контроля величины напряжения и тока. Принцип действия ШИМ состоит в изменении ширины импульса постоянной амплитуды при постоянной частоте.

Принципы ШИМ регулирования получили широкое распространение в импульсных преобразователях, в , яркостью свечения светодиодов и т.п.


Принцип действия ШИМ

Принцип действия состоит в изменении ширины импульса сигнала. При использовании способа широтно-импульсной модуляции, частота сигнала и амплитуда будут всегда постоянными. Важнейшим параметром сигнала ШИМ считают коэффициент заполнения, который можно вычислить по формуле.

где T = T ON + T OFF ; T ON - время высокого уровня; TOFF - время низкого уровня; T - период сигнала

Время высокого уровня и низкого уровня сигнала показано на рисунке выше. Остается добавить, то что U1- это состояния высокого уровня сигнала, то есть амплитуда.

Допустим у нас имеется ШИМ сигнал с заданным временным интервалом высокого и низкого уровня, смотри рисунок:

Подставив в формулу коэффициента заполнения ШИМ имеющиеся данные получим: 300/800=0,375. Для того чтобы узнать процентный коэффициент заполнения требуется результат умножить еще на 100%, т.е К ω% = 37,5% . Коэффициент заполнения это абстрактное значение.

Еще одним важнейшим параметром ШИМ считается также частота сигнала, которая определяется по известной формуле:

f=1/T=1/0,8=1,25 Гц

Благодаря возможности настройки ширины импульса можно регулировать среднее значение напряжения. На рисунке приведены различные коэффициенты заполнения при одной и той же частоте и амплитуды.

Для нахождения среднего значения напряжения ШИМ требуется коэффициент заполнения 37,5% и амплитуда 12 В:

U sr =К ω ×U 1 =0,375×12=4,5 Вольта

ШИМ позволяет понижать напряжение в интервале от U 1 и до 0. Это свойство часто используется в , или скорости вращения вала двигателя постоянного тока.

Сигнал ШИМ в электронике формируют с помощью микроконтроллера или какой-либо аналоговой схемой. Сигнал от них должен быть низкого уровня напряжения и очень малым током на выходе схемы. В случае если необходимо управление мощной нагрузкой, можно использовать типовую систему управления, с помощью биполярного или .

Сигнал ШИМ следует на базу транзистора через сопротивление R1, поэтому VT1 с изменением сигнала то открывается, то запирается. Если транзистор открыт, светодиод горит. А в момент времени, когда транзистор запирается, и светодиод тухнет. Если частота сигнала мала, то получим мигающий светодиод. При частоте от 50 Гц мигания уже не незаметны человеческим глазом, и мы видим эффект снижения яркости свечения. Чем ниже значение коэффициента заполнения, тем слабее будет гореть светодиод.

Этот же принцип и похожую электронную схему можно применить и в случае управления двигателем постоянного тока, но частота должна быть на порядок выше (15-20 кГц) по двум основным причинам.

При более низких частотах двигатель может издавать ужасный писк, вызывающий раздражение.
Ну и от частоты зависит стабильность работы двигателя. При управлении низкочастотным сигналом с низким коэффициентом заполнения, обороты будут нестабильны и он может даже полностью остановиться. Поэтому, с ростом частоты сигнала ШИМ, растет стабильность среднего выходного напряжения и снижаются пульсации напряжения. Однако, есть предел по частоте, т.к при больших частотах полупроводниковый прибор может не успеть полностью переключиться, и схема управления будет работать с ошибками. Кроме того высокая частота ШИМ сигнала также увеличивает потери на транзисторе. Управляя двигателем на высоких частотах желательно использовать быстродействующий полупроводник с низким сопротивлением проводимости.

Ниже рассмотрим реальную рабочую схему на операционном усилителе

Регулируя величину напряжения на неинвертирующем входе ОУ можно задаватьтребуюмую величину выходного напряжения. Поэтому, эту схему можно использовать в роли регулятора тока или напряжения или в роли регулятора оборотов двигателя постоянного тока.

Схема проста и надежна, состоит из доступных радиоэлементов и при правильной сборке сразу начнет работать. В роли управляющего ключа взят мощный полевой n- канальный транзистор.