13.03.2024

Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости. Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости Когда плоскости перпендикулярны


На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .

Урок исследование

Перпендикулярность прямой и плоскости.

Цель урока : Показать множественность подходов к доказательству теоремы; совершенствовать исследовательские умения и навыки учащихся.

Подготовка к уроку : ученики-консультанты дома готовят по дополнительной литературе семь доказательств признака перпендикулярности прямой и плоскости.

Ход урока : I

Вступительное слово учителя:

Сегодняшний урок – урок исследования. Всем вместе предстоит в процессе решения задач и ответов на проблемные вопросы, подойти к формулировке теоремы перпендикулярности прямой и плоскости и познакомиться с семью вариантами доказательств этой теоремы с тем, чтобы выбрать наиболее оптимальный из них, обстоятельно мотивировать своё мнение.

1.Подготовка к формулировке теоремы:

Повторение определения перпендикуляра к плоскости, анализ практического применения данного понятия посредством решения задач.

Задача 1.

Даны: Плоскость, точки А и В в этой плоскости; АМ – прямая перпендикулярная этой плоскости. Определить вид треугольника АМВ.

Задачи по вариантам.

Дан плоский четырёхугольник АВСD. АМ – перпендикуляр к плоскости ABCD. Какие из треугольников ABC, ACD, ABD, BCD, ADM, ABM, CAM – прямоугольные.

ABCD – квадрат. Прямая ВК перпендикулярна плоскости квадрата. Какие из треугольников ABD, BCD, ABK, BDK, BCK – прямоугольные.

Консультанты собирают листочки и проверяют решения, а учитель подводит учащихся к выводу:

1.Верно ли утверждение, что прямая, перпендикулярная к плоскости,

перпендикулярна любой прямой лежащей в этой плоскости?

2.Когда же прямая перпендикулярна плоскости?

3.Сколько прямых лежат на плоскости? Можно ли их посчитать?

Ученик – консультант на модели из спиц показывает различные варианты: в плоскости две прямые в плоскости, прямая перпендикулярна одной из них. Вывод: прямая не перпендикулярна плоскости. Следующий вариант модели: прямая перпендикулярна двум прямым, лежащим в плоскости, и, оказывается, перпендикулярна плоскости. Далее для закрепления, можно взять модель из трёх прямых и т. д.

По завершению работы с моделями перед учащимися ставится очередной проблемный вопрос: сколько прямых достаточно в плоскости, чтобы сказать, что прямая перпендикулярна плоскости?

Исследовав ситуацию перпендикулярности прямой и плоскости, мы в плотную подошли к теореме, которая даст возможность выяснить на чертежах, на моделях и в практика перпендикулярность к прямой и плоскости. Попробуем сформулировать теорему.

Ребята предлагают свои варианты формулировки теоремы. Учитель выделяет наиболее рациональнее и предлагает прослушать различные варианты формулировки и доказательства рассматриваемой теоремы, которые ученик разыскали дома в рекомендованной литературе.

2. Доказательство теоремы:

Теорема: Если прямая, пересекающаяся с плоскостью, перпендикулярна каким - нибудь двум прямым, проведённым на этой плоскости через точку пересечения данной прямой и плоскости, то она перпендикулярна и ко всякой третьей прямой проведённой в этой плоскости через ту же точку пересечения.

Доказательство: Отложим на прямой AA 1 произвольной длины, но равные отрезки OA и OA 1 и проведём на плоскости какую-нибудь прямую, которая пересекла бы три прямые исходящие из точки О в точках C, D, и B .Эти точки соединим с точками A и A 1 ; мы получим несколько треугольников.∆ACB= ∆A 1 CB, так как у них BC - общая, AC=A 1 C - как наклонные к прямой AA 1 , одинаково удаленые от основания О перпендикуляра ОС. По той же причине AB=A 1 B .Из равенства этих треугольников следует, что ∟ABC=∟A 1 BC.

∆ABD=∆A 1 BD по первому признаку равенства треугольников: BD - общая, AB=A 1 B по доказанному, ∟ABC= ∟A 1 BC .Из равенства этих треугольников следует, что AD=A 1 D.

∆АОD=∆A1OD по третьему признаку равенства треугольников. Из равенства этих треугольников следует, что AOD= A1OD; и так как эти углы смежные, то AA1 перпендикулярна OD.

Теорема: Прямая, перпендикулярная двум пересекающимся прямым, принадлежащим плоскости, перпендикулярна плоскости.

Первый случай, когда все прямые a, b, c проходят через точку О – точку пересечения прямой с плоскостью α. Отметим на прямой р вектор OP, на прямой с вектор OC и докажем, что произведение векторов OP и OC равно 0.

Разложим вектор OC по векторам OA и OB, расположенные соответственно на прямых a и b; тогда (речь идет о векторах) OC=OA+OB. Значит:

OP∙OC=OP (OA+OB)=OP∙OA+OP∙OB

Но OP ┴ OA, OP ┴ OB; поэтому OP∙OA=0, OP∙OB=0. Отсюда OP∙OC=0; значит OP ┴ OC и р ┴ с. Но с – любая прямая плоскости; значит, р ┴ α

Второй случай , когда прямые a, b, c не проходят через точку О. Проведем через точку О прямые a1||a; b1||b; c1||c. По условию p ┴ а, p ┴ b, значит p ┴ а1, p ┴ b1, и, по доказанному выше, p ┴ с1, а поэтому p ┴ с. Прямая с – любая прямая плоскости α; значит прямая р перпендикулярна ко всем прямым, лежащим в плоскости α, а поэтому p ┴ α.

Теорема: Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.

Доказательство можно взять из учебника А.В. Погорелов «Геометрия 7-11»

А 1

α A X B

А 2

IV вариант Э.Е. Лежандр

Теорема: Прямая перпендикулярная двум прямым, лежащим на плоскости, перпендикулярна самой плоскости. O

Дано: SO  OA, SO  OB, OA C  .,OB C 

Доказать: SO  

Доказательство:

1. Медиану треугольника можно выразить через стороны

4AM 2 =2(AB 2 +AC 2 )-BC 2

2 Через точку С проведём прямую так, чтобы отрезок АВ, заключённый между сторонами угла АОВ, разделился бы в этой точке пополам, то есть АС=ВС. SC – медиана треугольника АSВ: 4SС 2 =2(SА 2 +SВ 2 )-АВ 2 . ОС – медиана треугольника АОВ: 4ОВ 2 =2(АО 2 +ОВ 2 )-АВ 2 . Почленно вычитая эти равенства, получим: 4(SС 2 -ОС 2 )=2((SА 2 -АО 2 )+(SВ 2 -ОВ 2 )). Выражение в скобках в правой части равенства можно заменить по т. Пифагора. Для треугольника АОS: SО 2 =SА 2 -ОА 2 . Для треугольника ВОS: SО 2 =SВ 2 -ОВ 2 .

Отсюда: 4(SС 2 -ОС 2 )=2(SО 2 +SО 2 ), 4(SС 2 -ОС 2 )=4SО 2 , SС 2 -ОС 2 =SО 2 , откуда SС 2 =SО 2 +ОС 2 . Согласно обратной теоремы Пифагора, SО ОС. ОС – произвольная прямая, принадлежащая плоскости  , значит SО  .

Теорема: Если прямая перпендикулярна каждой из двух пересекающихся прямых лежащих в плоскости, то эта прямая перпендикулярна плоскости .

Докажем, что прямая l перпендикулярна любой третьей прямой в плоскости 

  1. Построение: Прямые m, n, g перенесем параллельно в точку О; ОА=ОС=ОD=ОВ, отсюда ABCD – прямоугольник, соединим A, B, C, D с некоторой точкой М.
  2. Треугольник АМD равен ВМС по трем сторонам, отсюда угол1 равен углу2. Треугольник МDL равен треугольнику МКВ по двум сторонам и углу между ними. МD=МВ, LD=BK – центрально симметричны; следовательно MK=LM.
  3. Треугольник MLK – равнобедренный, ОМ – медиана, значит, и высота. Получили ОМ  g, отсюда l  g, следовательно l  

Теорема: Если прямая перпендикулярна двум пересекающимся прямым на плоскости, то она перпендикулярно самой плоскости .

Р 1

Доказательство основано на симметрии относительно оси плоскости.

  1. Построение: l  l 1, m. O  l 1, m  n = O, OP=OP’ .
  2. Точки Р и Р’ – симметричны относительно оси m, также Р и Р’ – симметричны относительно оси n. Тогда  ((m  n)  ) – плоскость симметрии точек Р и Р’, следовательно, l 

3.Обсуждение различных вариантов доказательства теоремы. Учащиеся высказываю свои мнения о том, какое из доказательств, на их взгляд, является оптимальным и почему. Учитель разрешает выбрать для себя любой вариант и увязывает теорему с примерами из жизни: В технике часто встречается направление, перпендикулярное плоскости. Колонны устанавливают так, что их ось перпендикулярна плоскости фундамента; гвозди забивают в доску так, что они перпендикулярны плоскости доски; в цилиндре паровой машины шток перпендикулярен плоскости поршня и т.д. Особенно важно вертикальное направление, то есть направление силы тяжести, оно перпендикулярно горизонтальной плоскости.

Задача: ABCD – ромб, прямая ОК перпендикулярна диагоналям ромба.

Доказать: ОК перпендикулярна плоскости ромба.

Итог урока.

Задание на дом: п17, №120, №129

Закрепим понятие перпендикулярности прямой и плоскости конспектом урока. Предоставим общее определение, сформулируем и приведём доказательства теоремы и решим несколько задач на закрепление материала.

Из курса геометрии известно: две прямые считаются перпендикулярными, когда они пересекаются под углом 90 о.

Вконтакте

Одноклассники

Теоретическая часть

Переходя к исследованию характеристик пространственных фигур, будем применять новое понятие.

Определение:

прямая будет называться перпендикулярной плоскости, когда она перпендикулярна прямой на поверхности, произвольно проходящей через точку пересечения.

Иначе говоря, если отрезок «АВ» перпендикулярен плоскости α, тогда угол пересечения со всяким отрезком, проведённым по данной поверхности через «С» точку прохождения «АВ» через плоскость α, будет 90 о.

Из вышесказанного вытекает теорема о признаке перпендикулярности прямой и плоскости:

в случае если прямая, проведённая через плоскость, будет перпендикулярна двум прямым, проведённым на плоскости через точку пересечения, то она перпендикулярна целой плоскости.

Говоря другими словами, если на рисунке 1 углы ACD и ACE равны 90 о, то и угол ACF тоже будет 90 о. Смотреть рисунок 3.

Доказательство

По условиям теоремы линия «а» проведена перпендикулярно линиям d и e. Иначе говоря, углы ACD и ACE равны 90 о. Приводить доказательства будем, исходя из свойств равенства треугольников. Смотреть рисунок 3.

Через точку C прохождения линии a через плоскость α прочертим линию f в произвольном направлении. Приведём доказательства, что она будет перпендикулярна отрезку AB или угол ACF будет 90 о.

На прямой a отложим отрезки одинаковой длины AC и AB. На поверхности α проведём линию x в произвольном направлении и не проходящую через место пересечения в точке «С». Линия «х» должна пересекать линии e, d и f.

Соединим прямыми точки F, D и E c точками A и B.

Рассмотрим два треугольника ACE и BCE. По условиям построения:

  1. Имеются две одинаковые стороны AC и BC.
  2. У них дна общая сторона CE.
  3. Два равных угла ACE и BCE — по 90 о.

Следовательно, по условиям равенства треугольников, если имеем две равные стороны и одинаковый угол между ними, то эти треугольники равны. Из равенства треугольников следует, что стороны AE и BE равны.

Соответственно доказывается равенство треугольников ACD и BCD, иначе говоря, равенство сторон AD и BD.

Теперь рассмотрим два треугольника AED и BED. Из ранее доказанного равенства треугольников следует, что у этих фигур есть одинаковые стороны AE с BE и AD с BD. Одна сторона ED общая. Из условия равенства треугольников, определённых по трём сторонам, следует, что углы ADE и BDE равны.

Сумма углов ADE и ADF составляет 180 о. Сумма углов BDE и BDF также будет 180 о. Так как углы ADE и BDE равны, то и углы ADF и BDF равны.

Рассмотрим два треугольника ADF и BDF. Они имеют по две равных стороны AD и BD (доказано ранее), DF общую сторону и по равному углу между ними ADF и BDF. Следовательно, эти треугольники имеют одинаковые по длине стороны. То есть сторона BF имеет ту же длину, что и сторона AF.

Если рассматривать треугольник AFB, то он будет равнобедренный (AF равняется BF), а прямая FC является медианой, так как по условиям построения сторона AC равняется стороне BC. Следовательно, угол ACF равняется 90 о. Что и следовало доказать.

Важным следствием из приведённой теоремы будет утверждение:

если две параллельные пересекают плоскость и одна из них составляет угол 90 о, то и вторая походит через плоскость под углом 90 о.

По условиям задачи a и b являются параллельными. Смотреть рисунок 4. Линия a перпендикулярна поверхности α. Отсюда следует, что линия b будет также перпендикулярна поверхности α.

Для доказательства через две точки пересечения параллельных прямых с плоскостью проведём на поверхности прямую c . По теореме о прямой, перпендикулярной плоскости, угол DAB будет 90 о. Из свойств параллельных прямых следует, что угол ABF тоже будет 90 о. Следовательно, по определению прямая b будет перпендикулярна поверхности α.

Использование теоремы для решения задач

Для закрепления материала, используя основополагающие условия перпендикулярности прямой и плоскости, решим несколько задач.

Задача № 1

Условия. Из точки A построить перпендикулярную линию плоскости α. Смотреть рисунок 5.

На поверхности α проведём произвольную прямую b. Через прямую b и точку A построим поверхность β. Из точки A на линию b проведём отрезок AB. Из точки B на поверхности α проведём перпендикулярную линию c .

Из точки A на линию с опустим перпендикуляр AC. Докажем, что эта линия будет перпендикулярна плоскости.

Для доказательства через точку C на поверхности α проведём линиюd, параллельную b, и через линию c и точку A построим плоскость. Линия AC перпендикулярна линии c по условию построения и перпендикулярна линии d, как следствие о двух параллельных линиях из теоремы о перпендикулярности, так как по условию линияb перпендикулярна поверхности γ.

Следовательно, по определению перпендикулярности линии и плоскости, построенный отрезок AC перпендикулярен поверхности α.

Задача № 2

Условия. Отрезок АВ перпендикулярен плоскости α. Треугольник BDF расположен на поверхности α и имеет следующие параметры:

  • угол DBF будет 90 о
  • сторона BD =12 см;
  • сторона BF =16 см;
  • BC - медиана.

Смотреть рисунок 6.

Найти длину отрезка АС, если АВ = 24 см.

Решение. По теореме Пифагора, гипотенуза или сторона DF равна квадратному корню из суммы квадратов катетов. Длина BD в квадрате равна 144 и, соответственно, BC в квадрате будет 256. В сумме 400; извлекая квадратный корень, получаем 20.

Медиана BC в прямоугольном треугольнике делит гипотенузу на две равные части и по длине равна этим отрезкам, то есть ВС = DC = CF = 10.

Снова используется теорема Пифагора, и получаем: гипотенуза C = 26, что является квадратным корнем из 675, суммы квадратов катетов 576 (АВ = 24 в квадрате) и 100 (ВС = 10 в квадрате).

Ответ: Длина отрезка АС равняется 26 см.


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является