14.06.2024

Электричество с живыми организмами. Электричество в живой природе: шокирующие факты Просмотр содержимого презентации «презентация»


«Электричествов живых организмах»


Что такое, кем открыто,что собой представляет электричество

Впервые на электрическийзаряд обратил внимание Фалес Милетский. Он провел эксперимент, потер янтарьшерстью, после таких простых движений янтарь стал обладать свойством,притягивать мелкие предметы. Это свойство больше походит не на электрическиезаряды, а на магнетизм. Но в 1600 году Гильберт установил различие между этимидвумя явлениями.

В 1747 - 53 Б. Франклинизложил первую последовательную теорию электрических явлений, окончательноустановил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине 18 в.началось количественное изучение электрических и магнитных явлений. Появилисьпервые измерительные приборы - электроскопы различных конструкций,электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установилизакон взаимодействия неподвижных точечных электрических зарядов (работыКавендиша были опубликованы лишь в 1879). Этот основной закон электростатики(Кулона закон) впервые позволил создать метод измерения электрических зарядовпо силам взаимодействия между ними.

Следующий этап в развитиинауки об Э. связан с открытием в конце 18 в. Л. Гальвани «животногоэлектричества»

Главным ученым в изученииэлектричества и электрических зарядов является Майкл Фарадей. С помощью опытовон доказал, что действия электрических зарядов и токов не зависят от способа ихполучения. Также в 1831 Фарадей открыл индукцию электромагнитную - возбуждениеэлектрического тока в контуре, находящемся в переменном магнитном поле. В 1833 - 34 Фарадей установил законы электролиза; эти егоработы положили начало электрохимии.

И так, что же такоеэлектричество. Электричество - это совокупность явлений, обусловленныхсуществованием, движением и взаимодействием электрически заряженных тел иличастиц. Явление электричество можно встретить почти везде.

К примеру, если сильнопотереть пластмассовую расческу о волосы, то к ней начнут прилипать кусочкибумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. Притрении янтаря, пластмассы и ряда других материалов в них возникает электрическийзаряд. Само слово «электрический» происходит от латинского слова electrum,означающего «янтарь».

Откуда же беретсяэлектричество

Все окружающие насобъекты содержат миллионы электрических зарядов, состоящих из частиц,находящихся внутри атомов - основы всей материи. Ядро большинства атомоввключает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрическогозаряда, в то время как протоны несут в себе положительный заряд. Вокруг ядравращаются еще одни частицы - электроны, имеющие отрицательный заряд. Какправило, каждый атом имеет одинаковое количество протонов и электронов, чьиравные по величине, но противоположные заряды уравновешивают друг друга. Врезультате мы не ощущаем никакого заряда, а вещество считается незаряженным.Однако, если мы каким-либо образом нарушим это равновесие, то данный объектбудет обладать общим положительным или отрицательным зарядом в зависимости оттого, каких частиц в нем останется больше - протонов или электронов.

Электрические зарядывлияют друг на друга. Положительный и отрицательный заряды притягиваются друг кдругу, а два отрицательных или два положительных заряда отталкиваются друг отдруга. Если поднести к предмету отрицательно заряженную леску, отрицательныезаряды предмета переместятся на другой его конец, а положительные заряды,наоборот, переместятся поближе к леске. Положительные и отрицательные зарядылески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процессназывается электростатической индукцией, и о предмете говорят, что он попадаетв электростатическое поле лески.

Что такое, кем открыто,что собой представляют живые организмы

Живые организмы - главныйпредмет изучения в биологии. Живые организмы не только вписались в существующиймир, но и изолировали себя от него при помощи специальных барьеров. Среда, вкоторой образовались живые организмы, является пространственно – временнымконтинуумом событий, то есть совокупностью явлений физического мира, котораяопределяется характеристиками и положением Земли и Солнца.

Для удобства рассмотрениявсе организмы распределяются по разным группам и категориям, что составляетбиологическую систему их классификации. Самое общее их деление на ядерные ибезъядерные. По числу составляющих организм клеток их делят на одноклеточные имногоклеточные. Особое место между ними занимают колонии одноклеточных.

На все живые организмы,т.е. на растения и животные действуют абиотические факторы среды (факторынеживой природы), особенно температура, свет и увлажненность. В зависимости от влиянияфакторов неживой природы, растения и животных делят на различные группы и у нихпоявляются приспособленности к влиянию этих абиотических факторов.

Как уже было сказано,живые организмы распределяются на большое количество. Сегодня мы рассмотримживые организмы, на разделе их на теплокровных и хладнокровных:

с постоянной температуройтела (теплокровные);

с непостояннойтемпературой тела (хладнокровные).

Организмы с непостояннойтемпературой тела (рыбы, земноводные, пресмыкающиеся). Организмы с постояннойтемпературой тела (птицы, млекопитающие).

Чем связаны физика иживые организмы

Понимание сущности жизни,ее возникновения и эволюции определяет все будущее человечества на Земле каквида живого. Конечно, в настоящее время накоплен огромный материал,осуществляется его тщательное изучение, особенно в области молекулярнойбиологии и генетики, есть схемы или модели развития, есть даже практическоеклонирование человека.

Более того, биологиясообщает множество интересных и важных подробностей живых организмах, упускаячто-то принципиальное. Само слово «физика», по Аристотелю, означает «физис» - природа. Действительно, вся материя Вселенной, а следовательно мы сами, состоитиз атомов и молекул, для которых уже получены количественные и в целомправильные законы их поведения, в том числе и на квантово-молекулярном уровне.

Тем более, что физикабыла и остается важным фактором общего развития изучения живых организмов вцелом. В этом смысле физика как феномен культуры, а не только как областьзнания, создает наиболее близкое для биологии социокультурное понимание.Вероятно, именно в физическом познании отражены стили мышления.Логико-методологические аспекты познания и самой естественной науки, какизвестно, почти целиком основаны на опыте физических наук.

Поэтому задача научногопознания живого, может быть, и состоит в обосновании возможности примененияфизических моделей и представлений к определению развития природы и обществатакже на основе физических закономерностей и научного анализа получаемых знанийо механизме процессов в живом организме. Как говорил еще 25 лет тому назад М.В.Волькенштейн, «в биологии как науке о живом возможны только два пути: либопризнать невозможным объяснение жизни на основе физики и химии, либо такоеобъяснение возможно и его надо найти, в том числе на основе общихзакономерностей, характеризующих строение и природу материи, вещества и поля».

Электричество в различныхклассах живых организмах

В конце XVIII веказнаменитые ученые Гальвани и Вольта обнаружили электричество у животных.Первыми животными, на которых ученые делали опыт, чтобы подтвердить своеоткрытие, были лягушки. На клетку воздействуют различные факторы внешней среды- раздражители: физические - механические, температурные, электрические;

Электрическая активностьоказалась неотъемлемым свойством живой материи. Электричество генерируетнервные, мышечные и железистые клетки всех живых существ, однако наиболееразвита эта способность у рыб. Рассмотрим явление электричество у теплокровныхживых организмах.

В настоящее время известно,что из 20 тыс. современных видов рыб около 300 способны создавать ииспользовать биоэлектрические поля. По характеру генерируемых разрядов такиерыбы делятся на сильноэлектрические и слабоэлектрические. К первым относятсяпресноводные южноамериканские электрические угри, африканские электрическиесомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды:угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупныхморских скатов невысоко, поскольку морская вода является хорошим проводником,но сила тока их разрядов, например ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа,например, мормирус и другие представители отряда клюворылообразных не излучаютотдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичныхсигналов (импульсов) высокой частоты, этого поля проявляется в виде такназываемых силовых линий. Если в электрическое поле попадает объект,отличающийся по своей электропроводности от воды, конфигурация поля изменяется:предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей- рассредоточивают. Рыбы воспринимают эти изменения с помощью электрическихрецепторов, расположенных у большинства рыб в области головы, и определяютместонахождение объекта. Таким образом эти рыбы осуществляют подлиннуюэлектрическую локацию.

Почти все они охотятсяпреимущественно ночью. Некоторые из них обладают плохим зрением, поэтому впроцессе длительной эволюции и выработался у этих рыб такой совершенный способдля обнаружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемыеэлектрическими рыбами при ловле добычи и обороне от врагов, подсказываютчеловеку технические решения при разработке установок для электролова иотпугивания рыб. Исключительные перспективы открывает моделированиеэлектрических систем локации рыб. В современной подводной локационной техникепока не существует систем поиска и обнаружения, которые работали бы по образцуи подобию электролокаторов, созданных в мастерской природы. Учеными многихстран ведется упорная работа по созданию подобной аппаратуры.

ЗЕМНОВОДНЫЕ

Для изучения протеканияэлектричества в земноводных возмем опыт Гальвани. В своих опытах он использовалзадние лапки лягушки, соединенные с позвоночником. Подвешивая эти препараты намедном крючке к железным перилам балкона, он обратил внимание, что, когдаконечности лягушки раскачивались ветром, их мышцы сокращались при каждомприкосновении к перилам. На основании этого Гальвани пришел к выводу, чтоподергивания лапок были вызваны «животным электричеством», зарождающимся вспинном мозге лягушки и передаваемым по металлическим проводникам (крючку иперилам балкона) к мышцам конечностей. Против этого положения Гальвани о«животном электричестве» выступил физик Александр Вольта. В 1792 г. Вольта повторил опыты Гальвани и установил, что эти явления нельзя считать «животнымэлектричеством». В опыте Гальвани источником тока служил не спинной мозглягушки, а цепь, образованная из разнородных металлов – меди и железа. Вольтабыл прав. Первый опыт Гальвани не доказывал наличия «животного электричества»,но эти исследования привлекли внимание ученых к изучению электрических явленийв живых организмах. В ответ на возражение Вольта Гальвани произвел второй опыт,уже без участия металлов. Конец седалищного нерва он набрасывал стекляннымкрючком на мышцу конечности лягушки – и при этом также наблюдалось сокращениемышцы. В живом организме осуществляется и ионная проводимость.

Образованию и разделениюионов в живом веществе способствует наличие воды в белковой системе. От негозависит диэлектрическая постоянная белковой системы.

Носителями зарядов в этомслучае являются ионы водорода - протоны. Только в живом организме все видыпроводимости реализуются одновременно.

Соотношение между разнымипроводимостями меняется в зависимости от количества воды в белковой системе.Сегодня люди еще не знают всех свойств комплексной электропроводности живоговещества. Но ясно то, что именно от них зависят те принципиально отличныесвойства, которые присущи только живому.

На клетку воздействуютразличные факторы внешней среды - раздражители: физические - механические,температурные, электрические.

В живой природе существует немало процессов, связанных с электрическими явлениями. Рассмотрим некоторые из них.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

Если взять лимон или яблоко и разрезать, а потом приложить к кожуре два электрода, то они не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой к внутренней части мякоти, то появится разность потенциалов, и гальванометр отметит появление силы тока.

Изменение потенциала некоторых растительных тканей в момент их разрушения исследовал индийский ученый Бос. В частности, он соединил внешнюю и внутреннюю часть горошины гальванометром. Горошину он нагревал до температуры до 60С, при этом был зарегистрирован электрический потенциал в 0,5 В. Этим же ученым была исследована подушечка мимозы, которую он раздражал короткими импульса ми тока.

При раздражении возникал потенциал действия. Реакция мимозы была не мгновенной, а с запаздыванием на 0,1 с. Кроме того, в проводящих путях мимозы распространялся другой тип возбуждения, так называемая медленная волна, появляющаяся при повреждениях. Эта волна минует по душечки, достигая стебля, вызывает возникновение потенциала действия, передающегося вдоль стебля и приводящего к опусканию близлежащих листьев. Мимоза реагирует движением листа на раздражение подушечки током 0,5 мкА. Чувствительность языка человека в 10 раз ниже.


Не менее интересные явления, связанные с электричеством, можно обнаружить и у рыб. Древние греки остерегались встречаться в воде с рыбой, которая заставляла цепенеть животных и людей. Эта рыба была электрическим скатом и но сила название торпеда.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная - изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

У многих рыб (гимнарха, рыбыножа, гнатонемуса) голова заряжается положительно, хвост - отрицательно, а вот у электрического сома, наоборот, хвост - положительно, а голова - отрицательно. Свои электрические свойства рыбы используют как для атаки, так и для защиты, а также для того, чтобы отыскивать жертву, ориентироваться в мутной воде, опознавать опасных противников.

Существуют также слабоэлектрические рыбы. Они не имеют каких либо электрических органов. Это обыкновенные рыбы: караси, карпы, пескари и др. Они чувствуют электрическое поле и излучают слабый электрический сигнал.

Сначала биологи обнаружили странное поведение небольшой пресноводной рыбки - американского сомика. Он чувствовал приближение к нему металлической палочки в воде на расстоянии нескольких миллиметров. Английский ученый Ганс Лиссман заключал в парафиновую или стеклянную оболочку металлические предметы, опускал их в воду, но обмануть нильского сомика и гимнархуса ему не удалось. Рыбка чувствовала металл. Действительно, оказалось, что рыбы имеют специальные органы, которые воспринимают слабую напряженность электрического поля.

Проверяя чувствительность электрорецепторов у рыб, ученые проводили опыт. Закрывали аквариум с рыбкой темной тканью или бумагой и водили рядом по воздуху небольшим магнитом. Рыбка чувствовала магнитное поле. Потом исследователи просто водили возле аквариума руками. И она реагировала даже на самое слабое, создаваемое человеческой рукой, биоэлектрическое поле.

Рыбы не хуже, а порой и лучше самых чувствительных в мире приборов регистрируют электрическое поле и замечают малейшее изменение его напряженности. Рыбы, как оказалось, не только плавающие “гальванометры”, но и плавающие “электрогенераторы”. Они излучают в воду электрический ток и создают вокруг себя электрическое поле, значительно большее по силе, чем возникающее вокруг обычных живых клеток.

С помощью электрических сигналов рыбы могут даже особым образом “переговариваться”. Угри, например, при виде пищи начинают генерировать импульсы тока определенной частоты, привлекая тем самым своих собратьев. А если двух рыб поместить в один аквариум, частота их электрических разрядов сразу же увеличивается.

Рыбы соперники определяют силу своего противника по силе излучаемых им сигналов. Другие животные таких чувств не имеют. Почему же только рыбы наделены этим свойством?

Рыбы живут в воде. Морская вода прекрасный проводник. Электрические волны распространяются в ней, не затухая, на тысячи километров. Кроме того, рыбы имеют физиологические особенности строения мышц, которые со временем стали “живыми генераторами”.

Способность рыб аккумулировать электрическую энергию, делает их идеальными аккумуляторами. Если бы удалось подробнее разобраться с деталями их работы, произошел бы переворот в технике, в плане создания аккумуляторов. Электролокация и подводная связь рыб позволила разработать систему для беспроводной связи между рыболовным судном и тралом.

Уместно было бы закончить высказыванием, которое было написано рядом с обычным стеклянным аквариумом с электрическим скатом, представленном на выставке Английского научного Королевского общества в 1960 г. В аквариум были опущены два электрода, к которым был подключен вольтметр. Когда рыба находилась в состоянии покоя, вольтметр показывал 0 В, при движении рыбы - 400 В. Природу этого электрического явления, наблюдаемого задолго до организации Английского Королевского общества, человек разгадать до сих пор не может. Тайна электрических явлений в живой природе и сейчас будоражит умы ученых и требует своего решения.

Слайд 2

История открытия электрического явления

Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н.э. Он обнаружил, что янтарь, потертый о шерсть, приобретет свойства притягивать легкие предметы: пушинки, кусочки бумаги. Позже считалось, что таким свойством обладает только янтарь. В середине XVII века Отто фон Гарике разработал электрическую машину трения. Кроме того, им было обнаружено свойство электрического отталкивания однополярно заряженных предметов, а в 1729 году английский ученый Стивен Грей обнаружил разделение тел на проводники электрического тока и изоляторы. Вскоре его коллега Роберт Симмер, наблюдая за электризацией своих шелковых чулок, пришел к выводу, что электрические явления обусловлены разделением на положительный и отрицательный заряд тел. Тела при трении друг о друга вызывают электризацию этих тел, то есть электризация – это накопление на теле заряда одного типа, причем заряды одного знака отталкиваются, а заряды разного знака притягиваются друг к другу и компенсируются при соединении, делая тело нейтральным (незаряженным). В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Опыты, проведенные Дюфе, говорили, что один из зарядов образуется при трении стекла о шелк, а другой – при трении смолы о шерсть. Понятие о положительном и отрицательном заряде ввел немецкий естествоиспытатель Георг Кристоф. Первым количественным исследователем был закон взаимодействия зарядов, экспериментально установленный в 1785 году Шарлем Кулоном с помощью разработанных им чувствительных крутильных весов.

Слайд 3

Почему у наэлектризованных людей волосы поднимаются вверх?

Волосы электризуются одноименным зарядом. Как известно, одноименные заряды отталкиваются, поэтому волосы, подобно листочкам бумажного султана, расходятся во все стороны. Если любое проводящее тело, в том числе и человеческое, изолировать от земли, то его можно зарядить до большого потенциала. Так, с помощью электростатической машины тело человека можно зарядить до потенциала в десятки тысяч вольт.

Слайд 4

Оказывает ли электрический заряд, размещенный в таком случае на теле человека, влияние на нервную систему?

Человеческое тело - проводник электричества. Если его изолировать от земли и зарядить, то заряд располагается исключительно по поверхности тела, поэтому заряжение до сравнительно высокого потенциала не влияет на нервную систему, так как нервные волокна находятся под кожей. Влияние электрического заряда на нервную систему сказывается в момент разряда, при котором происходит перераспределение зарядов на теле. Это перераспределение представляет собой кратковременный электрический ток, проходящий не по поверхности, а внутри организма.

Слайд 5

Почему птицы безнаказанно садятся на провода высоковольтной передачи?

Тело сидящей на проводе птицы представляет собою ответвление цепи, включенное параллельно участку проводника между лапками птицы. При параллельном соединении двух участков цепи величина токов в них обратно пропорциональна сопротивлению. Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожна и безвредна. Следует добавить еще, что разность потенциалов на участке между ногами птицы мала.

Слайд 6

Рыбы и электричество.

Рыбы используют разряды: чтобы освещать свой путь; для защиты, нападения и оглушения жертвы; - передают сигналы друг другу и обнаруживают заблаговременно препятствия

Слайд 7

Самыми известными электрическими рыбами являются электрический угорь, электрический скат и электрический сом. У этих рыб имеются специальные органы для накопления электрической энергии. Небольшие напряжения, возникающие в обычных мышечных волокнах, суммируются здесь благодаря последовательному включению множества отдельных элементов, которые нервами, как проводниками, соединены в длинные батареи.

Слайд 8

Скаты.

«Эта рыба заставляет цепенеть животных, которых она хочет поймать, пересиливая их силой удара, живущего у нее в теле». Аристотель

Слайд 9

Сом.

Электрические органы расположены почти по всей длине тела рыбы, дают разряды напряжением до 360 В.

Слайд 10

ЭЛЕКТРИЧЕСКИЙ УГОРЬ

Самые мощные электрические органы у угрей, обитающих в реках тропической Америки. Их разряды достигают напряжения 650 В.

Слайд 11

Гром одно из грозных явлений.

Гром и молния – это одно из грозных, но величественных явлений, с которыми человек был еще готов с древности. Разбушевавшаяся стихия. Обрушивалась на него в виде ослепляющий гигантских молний, грозных громовых ударов, ливня и града. В страхе перед грозой люди обожествляли её, считая орудием богов.

Слайд 12

Молния

Чаще всего мы наблюдаем молнию, напоминающую извилистую реку с притоками. Такие молнии называют линейными, их длина при разряде между облаками достигает более 20км. Молнии других видов можно увидеть значительно реже. Электрический разряд в атмосфере в виде линейной молнии представляет собой электрический ток. Причем сила тока меняется за 0,2 – 0,3 секунды. Примерно 65% всех молний. Которые наблюдаются у нас имеют значение силы тока 10000 А, но редко достигают и 230 000 А. Канал молнии, через который протекает ток, сильно разогревается и ярко светит. Температура канала достигает десятков тысяч градусов, давление повышается, воздух расширяется проходит как бы взрыв раскаленных газов. Это мы воспринимаем как гром. Удар молнии в наземный предмет может вызвать пожар.

Слайд 13

При ударе молнии, например в дерево. Оно нагревается, влага из него испаряется, а давление образовавшегося пара и нагревшихся газов приводят к разрушениям. Для защиты зданий от грозовых разрядов применяют молниеотводы, которые представляют собой металлический стержень, возвышающийся над защищаемым объектом.

Слайд 14

Молния.

В лиственных деревьях ток проходит внутри ствола по сердцевине, где много сока, который под действием тока закипает и пары разрывают дерево.

Посмотреть все слайды

В конце XVIII века знаменитые ученые Гальвани и Вольта обнаружили электри­чество у животных. Первыми животными, на которых ученые делали опыт, чтобы подтвердить свое открытие, были лягушки. Электричество генерирует нервные, мышечные и железистые клетки всех живых существ, однако наиболее развита эта способность у рыб.


В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля.
По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектри­ческие. К первым относятся пресноводные южноамериканские электрические угри, африканские электрические сомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды: угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупных морских скатов невысоко, поскольку морская вода является хорошим проводником, но сила тока их разрядов, напри­мер ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа, например, мормирус, гнатонемус, гимнарх и другие пред­ставители отряда клюворылообразных не излучают отдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичных сигналов (импульсов) высокой частоты, создавая вокруг своего тела электрическое поле. Конфигурация этого поля проявляется в виде так называемых силовых линий. Если в электри­ческое поле попадает объект, отличающийся по своей электропроводности от воды, конфигурация поля изменяется: предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей - рассредоточивают. Рыбы воспринимают эти изменения с помощью электрических рецепторов, расположенных у большинст­ва рыб в области головы, и определяют местонахождение объекта. Таким образом эти рыбы осуществляют подлинную электрическую локацию.

Клюворылообразные рыбы живут в Африке, в медленно текущих илистых мут­ных водах рек, а также в озерах и болотах, почти все они охотятся преимуществен­но ночью. Некоторые из них обладают плохим зрением, поэтому в процессе дли­тельной эволюции и выработался у этих рыб такой совершенный способ для об­наружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемые электрическими рыбами при ловле добычи и обороне от врагов, подсказывают человеку технические решения при разработке установок для электролова и отпугивания рыб. Исключительные перспективы открывает моделирование электрических систем локации рыб. В современной подводной локационной технике пока не существует систем поиска и обнаружения, которые работали бы по образцу и подобию электролокаторов, созданных в мастерской природы. Учеными многих стран ведется упорная работа по созданию подобной аппаратуры.

Человечество пыталось логично объяснить различные электрические явления, примеры которых они наблюдали в природе. Так, в древности молнии считались верным признаком гнева богов, средневековые мореплаватели блаженно трепетали перед огнями святого Эльма, а наши современники чрезвычайно боятся встречи с шаровыми молниями.

Всё это - электрические явления. В природе всё, даже мы с вами, несёт в себе Если объекты с большими зарядами разной полярности сближаются, то возникает физическое взаимодействие, видимым результатом которого становится окрашенный, как правило, в жёлтый или фиолетовый цвет поток холодной плазмы между ними. Её течение прекращается, как только заряды в обоих телах уравновешиваются.

Самые распространённые электрические явления в природе - молнии. Ежесекундно в поверхность Земли их ударяет несколько сотен. Молнии выбирают своей целью, как правило, отдельностоящие высокие объекты, поскольку, согласно физическим законам, для передачи сильного заряда требуется кратчайшее расстояние между грозовым облаком и поверхностью Земли. Чтобы обезопасить здания от попадания в них молний, их хозяева устанавливают на крышах громоотводы, которые представляют собой высокие металлические конструкции с заземлением, что при попадании молний позволяет отводить весь разряд в почву.

Ещё одно электрическое явление, природа которого очень долгое время оставалась неясной. Имели с ним дело в основном моряки. Проявляли огни себя следующим образом: при попадании корабля в грозу вершины его мачт начинали полыхать ярким пламенем. Объяснение явлению оказалось очень простым - основополагающую роль играло высокое напряжение электромагнитного поля, что всякий раз наблюдается перед началом грозы. Но не только моряки могут иметь дело с огнями. Пилоты крупных авиалайнеров также сталкивались с этим явлением, когда пролетали сквозь облака пепла, подброшенного в небо извержениями вулканов. Огни возникают от трения частиц пепла об обшивку.

И молнии, и огни святого Эльма - это электрические явления, которые видели многие, а вот с столкнуться удавалось далеко не каждому. Их природа так и не изучена до конца. Обычно очевидцы описывают шаровую молнию как яркое светящееся образование шарообразной формы, хаотично перемещающееся в пространстве. Три года назад была выдвинута теория, которая поставила под сомнение реальность их существования. Если ранее считалось, что разнообразные шаровые молнии - это электрические явления, то теория предположила, что они являются не чем иным, как галлюцинациями.

Есть ещё одно явление, имеющее электромагнитную природу - северное сияние. Оно возникает вследствие воздействия солнечного ветра на верхние Северное сияние похоже на всполохи самых разных цветов и фиксируется, как правило, в довольно высоких широтах. Есть, конечно, и исключения - если достаточно высока, то сияние могут видеть в небе и жители умеренных широт.

Электрические явления являются довольно интересным объектом исследования для физиков по всей планете, так как большинство из них требует подробного обоснования и серьёзного изучения.