21.12.2023

Клеточному уровню организации жизни соответствуют. Уровни организации жизни. Клеточный уровень организации жизни


Становился всё сложнее и совершеннее. Теперь, как результат, можно выделить множество таких уровней, их количество зависит от того, насколько детально они рассматриваются. Существуют молекулярный, клеточный, субклеточный, тканевый, организменный, видовой, биогеоцинотический и глобальный (биосферный) уровни. Каждый предыдущий является составной частью следующего.

Единицы организации этого уровня весьма однообразны, тем не менее здесь происходят процессы, которые очень важны для всего организма в целом. Так, именно макромолекулы и их соединения обеспечивают передачу генетической информации в виде ДНК, они же заведуют превращением энергии, а также обменом веществ. К некоторым основным единицам этого уровня можно отнести углеводы, жиры, белки, которые состоят из аминокислот и т. д.

Он является одним из основных, поскольку именно из клеток в последующем создаются ткани, органы и их системы. Это своеобразная единица всего живого. Развитие и рост живых организмов зависят именно от тех процессов, что происходят в клетке. Нужно знать, что существует только два их основных типа: ядерные и безъядерные. Еще их называют эукариотами и прокариотами соответственно.

Тканево-органный уровень

Ткань состоит из клеток, которые очень схожи между собой. В животных организмах существует 4 вида тканей: мышечная, нервная, эпителиальная и соединительная, - в то время как растения имеют 6 их видов. Из тканей образуются органы, и каждый из них выполняет свою функцию. Орган часто состоит из нескольких видов тканей, одна из которых обязательно преобладает.

Организменный уровень

Организмы могут быть как многоклеточными, так и одноклеточными. Последние, соответственно, пропускают такой уровень организации живой материи, как тканево-органный. Многоклеточные же представляют собой целостную систему, которая может существовать самостоятельно и поддерживать свою внутреннюю среду в стабильном состоянии (гомеостаз).

Следующий уровень организации живой материи: популяционно-видовой

В мире существуют около 2 миллионов видов живых организмов. Данный уровень организации живой материи более масштабный, чем предыдущие. Вид охватывает похожих особей, способных к размножению и воспроизведению здорового потомства. Популяцией же называются особи, которые принадлежат к одному виду и очень долго проживают на одной территории.

Биогеоцинотический и биосферный уровни организации

Биогеоциноз охватывает уже не только живые организмы. В него (в экосистему) входят все те представители, которые взаимодействуют с факторами среды своего обитания. Биосферный уровень организации живой материи - самый глобальный. Он охватывает все экосистемы, а также затрагивает гидросферу, литосферу и атмосферу.

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

Наличие селективного маркера

Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.


Мир живой природы представляет собой совокупность биологических систем разного уровня организации и различной соподченённости. Они находятся в непрерывном взаимодействии. Выделяют несколько уровней живой материи:

Молекулярный – любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также важных органических веществ. С этого уровня начинается важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др. – наиболее древний уровень структуры живой природы, граничащий с неживой природой.

Клеточный – клетка – структурная и функциональная единица, также единица размножения и развития всех живых организмов, обитающих на Земле. Не клеточных форм жизни нет, а существование вирусов лишь подтвержает это правило, так как они могут проявлять свойства живых систем только в клетках.

Тканевой — Ткань представляет собой совокупность сходных по строению клеток, объединённых выполнением общей функции.

Органный — у большинства животных орган- это структурно-функциональное объединение нескольких типов тканей. Например, кожа человека как орган включает эпителий и соединительную ткань, которые вместе выполняют целый ряд функций среди которых наиболее значительная — защитная.

Организменный — многоклеточный организм представляет собой целостную систему органов, специализированных для выполнения различных функций. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней.

Популяционно-видовой – совокупность организмов одного итого же вида, объединённых общим местом обитания, создаёт популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

Биогеоценотический — биогеоценоз — совокупность организмов разных видов и различной сложности организации, всех факторов среды обитания.

Биосферный — биосфера -самый высокий уровень организации живой материи на нашей планете, включающая всё живое на Земле. Таким образом, живая природа представляет собой сложно организованную иерархическую систему.

2. Размножение на клеточном уровне, митоз его биологическая роль

Митоз (от греч.mitos- нить),тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. Кариокинез, непрямое деление клетки, наиболее распространённый способ воспроизведения (репродукции)клеток, обеспечивающий тождественное распределение генетического материала между дочерними клетками и преемственность хромосом в ряду клеточных поколений.


Рис. 1. Схема митоза: 1, 2 – профаза; 3 – прометафаза; 4 – метафаза; 5– анафаза; 6 – ранняя телофаза; 7 – поздняя телофаза

Биологическое значение митоза определяется сочетанием в нём удвоения хромосом путём продольного расщепления их и равномерного распределения между дочерними клетками. Началу Митоз предшествует период подготовки, включающий накопление энергии, синтез дезоксирибонуклеиновой кислоты (днк) и репродукции центриолей. Источником энергии служат богатые энергией, или так называемые макроэргические соединения. Митоз не сопровождается усилением дыхания т.к окислительные процессы происходят в интерфазе (наполнение «энергетического резерву ара»). Периодическое наполнение и опустошения энергетического резерву ара-основа энергетики митоза.

Стадии митоза следующие. Единый процесс. Митоз обычно подразделяют на 4 стадии: профазу, метафазу, анафазу и телофазу.


Рис. 2. Митоз в меристематических клетках корешка лука (микрофотография). Интерфаза

Иногда описывают ещё одну стадию, предшествующую началу профазы — препрофазы (антефазу). Препрофаза — синтетическая стадия Митоз, соответствующая концу интерфазы (S- G 2 периоды) . включает удвоение ДНК и синтез материала МИТОТИЧЕСКОГО АППАРАТА. В ПРОФАЗЕ происходят РЕОРГАНИЗАЦИЯ ядра с КОНДЕНСАЦИЕЙ и спирализацией ХРОМОСОМ, разрушение ядерной оболочки и формирование митотического аппарата путём синтеза белков и «сборки» их в ориентированную систему ВЕРЕТЕНА ДЕЛЕНИЕ КЛЕТКИ.


Рис. 3. Митоз в меристематических клатках корешка лука (микрофотография). Профаза (фигура рыхлого клубка)


Рис. 4. Митоз в меристематических клетках корешка лука (микрофотография). Поздняя профаза (разрушение ядерной оболочки)

МЕТАФАЗА – заключается в движении ХРОМОСОМ к экваториальной плоскости (метакинез, или прометафаза),формировании экваториальной ПЛАСТИНКИ («материнской звезды») и в разъединении хроматид, или сестринских хромосом.


Рис. 5. Митоз в меристематических клетках корешка лука (микрофотография). Прометафаза


Рис.6. Митоз в меристематических клетках корешка лука (микрофотография). Метафаза


Рис. 7. Митоз в меристематических клетках корешка лука (микрофотография). Анафаза

АНАФАЗА — стадия расхождения хромосом к полюсам. Анафазное движение связано с удлинением центральных нитей ВЕРЕТИНА, раздвигающего митотические полюсы, и с укорочением хромосомальных МИКРОТРУБОЧЕК митотического аппарата. Удлинение центральных нитей ВЕРЕТЕНА происходит либо за счёт ПОЛЯРИЗАЦИИ «запасных макромолекул», достраивающих МИКРОТРУБОЧКИ веретина, либо за счёт дегидратации этой структуры. Укорочение хромосомальных микротрубочек обеспечивается СВОЙСТВАМИ сократительных белков митотического аппарата, способных к сокращению без утолщения. ТЕЛОФАЗА — заключается в реконструкции дочерних ядер из хромосом, собравшихся у полюсов, разделение клеточного тела (ЦИТОТИМИЯ, ЦИТОКИНЕЗ)и окончательном разрушении митотического аппарата с ОБРАЗОВАНИЕМ промежуточного тельца. Реконструкция дочерних ядер связана с десперализацией хромосом, ВОССТАНОВЛЕНИЕМ ядрышка и ядерной оболочки. Цитотомия осуществляется, путём образования клеточной ПЛАСТИНКИ (в растительной клетке) или путём образования борозды деления (в животной клетке).


Рис.8. Митоз в меристематических клетках корешка лука (микрофотография). Ранняя телофаза


Рис. 9. Митоз в меристематических клетках корешка лука (микрофотография). Поздняя телофаза

Механизм цитотомии связывают либо с сокращением желатинизированного кольца ЦИТОПЛАЗМЫ, опоясывающего ЭКВАТОР (гипотеза» сократимого кольца»),либо с расширением поверхности клетки вследствие распрямления петлеобразных белковых цепей (гипотеза «расширение МЕМБРАН»)

Продолжительность митоза — зависит от размеров клеток, их плоидности, числа ядер, а также от условий окружающей среды, в частности от температуры. В животных клетках Митоз длится 30 – 60 мин, в растительных 2-3 часа. Более длительные стадии митоза, связанные с процессами синтеза (препрофаза, профаза, телофаза) самодвижение хромосом (метакинез, анафаза) осуществляется быстро.

БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ МИТОЗА — постоянство строения и правильность функционирования органов и тканей многоклеточного организма были бы невозможны без сохранения одинакового набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные проявления жизнедеятельности: эмбриональное развитие, рост, восстановление органов и тканей после повреждения, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, случившихся клеток кожи, эпителия кишечника и пр.) У простейших митоз обеспечивает бесполое размножение.

3. Гаметогенез, характеристика половых клеток, оплодотворение

Половое клетки (гаметы) — мужские сперматозоиды и женские яйцеклетки (или яйца) развиваются в половых железах. В первом случае путь их развития называют СПЕРМАТОГЕНЕЗОМ (от греч. sperm — семя и genesis — происхождение), во втором – ОВОГЕНЕЗОМ (от. лат. оvо — яйцо)

Гаметы – половые клетки, участие их в оплодотворении, образовании зиготы (первая клетка нового организма). Результат оплодотворения – удвоение числа хромосом, восстановление их дип-лоидного набора в зиготе Особенности гамет – одинарный, гапло-идный набор хромосом по срав нению с диплоидным набором хромосом в клетках тела2. Этапы развития половых клеток: 1) увеличение путем мито за числа первичных половых кле ток с диплоидным набором хромосом, 2) рост первичных половых клеток, 3) созревание половых клеток.

СТАДИИ ГАМЕТОГЕНЕЗА — в процессе развития половых как сперматозоидов, так и яйцеклеток, выделяют стадий(рис). Первая стадия — период размножения, в котором первичные половые клетки делятся путём митоза, в результате чего увеличивается их количество. При сперматогенезе размножение первичных половых клеток очень интенсивное. Оно начинается с наступлением половой зрелости и протекает в течение всего репродуктивного периода. Размножение женских первичных половых клеток у низших позвоночных продолжается почти всю жизнь. У человека эти клетки с наибольшей интенсивностью размножаются лишь во внутриутробном периоде развития. После формирования женских половых желез — яичников, первичные половые клетки перестают делится, большая часть их погибает и рассасывается, остальные сохраняются в состоянии покоя до полового созревания.

Вторая стадия — период роста. У незрелых мужских гамет этот период выражен Нерезко. Размеры мужских гамет увеличиваются незначительно. Напротив, будущие яйцеклетки – овоциты увеличиваются иногда в сотни, тысячи и даже миллионы раз. У одних животных овоциты растут очень быстро — в течение нескольких дней или недель, у других видов рост продолжается месяцы и годы. Рост овоцитов осуществляется за счёт веществ, образуемых другими клетками организма.

Третья стадия-период созревания, или мейоз (рис1).


Рис. 9. Схема образования половых клеток

Клетки, вступающие в период мейоза, содержат диплоидный набор хромосом и уже удвоенное количество ДНК(2n 4с).

В процессе полового размножения у организмов любого вида из поколения в поколение сохраняется свойственное ему число хромосом. Это достигается тем, что перед слиянием половых клеток -оплодотворением — в процессе созревания в них уменьшается (редуцируется)число хромосом, т.е. из диплоидного набора (2n)образуется гаплоидный(n). Закономерности прохождения мейоза в мужских и женских половых клетках по существу одинаковы.

Список литературы

    Горелов А. А. Концепции современного естествознания. — М.: Центр, 2008.

    Дубнищева Т.Я. и др. Современное естествознание. — М.: Маркетинг, 2009.

    Лебедева Н.В., Дроздов Н.Н., Криволуцкий Д.А. Биологическое разнообразие. М., 2004.

    Мамонтов С.Г. Биология. М., 2007.

    Ярыгин В. Биология. М., 2006.

    Свойства живых организмов

    1. Обмен веществ и энергии с окружающей средой (главный признак живого).


    2. Раздражимость (способность реагировать на воздействия).


    3. Размножение (самовоспроизведение).

    Уровни организации живой материи

    1. Молекулярный - это уровень сложных органических веществ - белков и нуклеиновых кислот. На этом уровне происходят химические реакции обмена веществ (гликолиз, кроссинговер и т.п.), но молекулы сами по себе еще не могут считаться живыми.


    2. Клеточный . На этом уровне возникает жизнь , потому что клетка - минимальная единица, обладающая всеми свойствами живого.


    3. Органно-тканевой - характерен только для многоклеточных организмов.


    4. Организменный - за счет нервно-гуморальной регуляции и обмена веществ на этом уровне осуществляется гомеостаз , т.е. сохранение постоянства внутренней среды организма.


    5. Популяционно-видовой . На этом уровне происходит эволюция , т.е. изменение организмов, связанное с приспособлением их к среде обитания под действием естественного отбора. Наименьшей единицей эволюции является популяция.


    6. Биогеоценотический (совокупность популяций разных видов, связанных между собой и окружающей неживой природой). На этом уровне происходит

    • круговорот веществ и превращение энергии , а также
    • саморегуляция , за счет которой поддерживается устойчивость экосистем и биогеоценозов.

    7. Биосферный . На этом уровне происходит

    • глобальный круговорот веществ и превращение энергии , а так же
    • взаимодействие живого и неживого вещества планеты.

    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают значение фотосинтеза в природе?
    1) биосферном
    2) клеточном
    3) биогеоценотическом
    4) молекулярном
    5) тканево-органном

    Ответ


    Выберите один, наиболее правильный вариант. Какой уровень организации живой природы представляет собой совокупность популяций разных видов, связанных между собой и окружающей неживой природой
    1) организменный
    2) популяционно-видовой
    3) биогеоценотический
    4) биосферный

    Ответ


    Выберите один, наиболее правильный вариант. Генные мутации происходят на уровне организации живого
    1) организменном
    2) клеточном
    3) видовом
    4) молекулярном

    Ответ


    Выберите один, наиболее правильный вариант. Элементарная структура, на уровне которой проявляется в природе действие естественного отбора
    1) организм
    2) биоценоз
    3) вид
    4) популяция

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки служат сходными для живых и неживых объектов природы?
    1) клеточное строение
    2) изменение температуры тела
    3) наследственность
    4) раздражимость
    5) перемещение в пространстве

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают особенности реакций фотосинтеза у высших растений?
    1) биосферном
    2) клеточном
    3) популяционно-видовом
    4) молекулярном
    5) экосистемном

    Ответ


    Ниже приведен перечень понятий. Все они, кроме двух, являются уровнями организации живого. Найдите два понятия, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
    1) биосферный
    2) генный
    3) популяционно-видовой
    4) биогеоценотический
    5) биогенный

    Ответ


    1. Установите, в какой последовательности располагаются уровни организации живого. Запишите соответствующую последовательность цифр.
    1) популяционный
    2) клеточный
    3) видовой
    4) биогеоценотический
    5) молекулярно-генетический
    6) организменный

    Ответ


    2. Установите последовательность усложнения уровней организации живого. Запишите соответствующую последовательность цифр.
    1) биосферный
    2) клеточный
    3) биогеоценотический
    4) организменный
    5) популяционно-видовой

    Ответ


    1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточный уровень организации совпадает с организменным у
    1) бактериофагов
    2) амёбы дизентерийной
    3) вирус полиомиелита
    4) кролика дикого
    5) эвглены зелёной

    Ответ


    2. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Клеточному и организменному уровням организации жизни одновременно соответствуют.
    1) гидра пресноводная
    2) спирогира
    3) улотрикс
    4) амеба дизентерийная
    5) цианобактерия

    Ответ


    3. Выберите два верных ответа. У каких организмов совпадают клеточный и организменный уровни жизни?
    1) серобактерия
    2) пеницилл
    3) хламидомонада
    4) пшеница
    5) гидра

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Одна амеба обыкновенная одновременно находится на:
    1) Молекулярном уровне организации жизни
    2) Популяционно-видовом уровне организации жизни
    3) Клеточном уровне организации жизни
    4) Тканевом уровне организации жизни
    5) Организменном уровне организации жизни

    Ответ


    1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Живое от неживого отличается
    1) способностью изменять свойства объекта под воздействием среды
    2) способностью участвовать в круговороте веществ
    3) способностью воспроизводить себе подобных
    4) изменять размеры объекта под воздействием среды
    5) способность изменять свойства других объектов

    Ответ


    2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки присущи только живому веществу?
    1) рост
    2) движение
    3) самовоспроизведение
    4) ритмичность
    5) наследственность

    Ответ


    3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для всех живых организмов характерно
    1) образование органических веществ из неорганических
    2) поглощение из почвы растворённых в воде минеральных веществ
    3) активное передвижение в пространстве
    4) дыхание, питание, размножение
    5) раздражимость

    Ответ


    4. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки характерны только для живых систем?
    1) способность к передвижению
    2) обмен веществ и энергии
    3) зависимость от температурных колебаний
    4) рост, развитие и способность к самовоспроизведению
    5) устойчивость и относительно слабая изменчивость

    Ответ


    5. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для организмов, в отличие от объектов неживой природы, характерны
    1) изменение
    2) движение
    3) гомеостаз
    4) эволюция
    5) химический состав

    Ответ


    Установите соответствие между уровнями организации живого и их характеристиками и явлениями: 1) биоценотический, 2) биосферный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) процессы охватывают всю планету
    Б) симбиоз
    В) межвидовая борьба за существование
    Г) передача энергии от продуцентов консументам
    Д) испарение воды
    Е) сукцессия (смена природных сообществ)

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Онтогенез, метаболизм, гомеостаз, размножение происходят на … уровнях организации.
    1) клеточном
    2) молекулярном
    3) организменном
    4) органном
    5) тканевом

    Ответ


    Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. На популяционно-видовом уровне организации жизни находятся
    1) рыбы озера Байкал
    2) птицы Арктики
    3) Амурские тигры Приморского края России
    4) городские воробьи Парка культуры и отдыха
    5) синицы Европы

    Ответ


    Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Какие из уровней организации жизни являются надвидовыми?
    1) популяционно-видовой
    2) органоидно-клеточный
    3) биогеоценотический
    4) биосферный
    5) молекулярно-генетический

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточному уровню организации жизни соответствует
    1) хламидомонада
    2) серобактерия
    3) бактериофаг
    4) ламинария
    5) лишайник

    Ответ


    Выберите два варианта. Энергетический обмен у обыкновенной амёбы происходит на уровне организации живого
    1) клеточном
    2) биосферном
    3) организменном
    4) биогеоценотическом
    5) популяционно-видовом

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каком уровне организации происходят такие процессы, как раздражимость и обмен веществ?
    1) популяционно-видовой
    2) организменный
    3) молекулярно-генетический
    4) биогеоценотический
    5) клеточный

    Ответ

    © Д.В.Поздняков, 2009-2019

    Для которой свойственна организация с четкой иерархией. Именно это свойство и отражают так называемые уровни организации жизни. В такой системе все части четко расположены, начиная от низшего порядка к высшему.

    Уровни организации жизни - это иерархическая система с соподчиненными порядками, которая отображает не только характер биосистем, но и их постепенное усложнение в отношении друг к другу. На сегодняшний день принято выделять восемь основных уровней

    Кроме того, выделяют следующие системы организации:

    1. Микросистема - это некая доорганизменная ступень, которая включает в себя молекулярные и субклеточные уровни.

    2. Мезосистема - это следующая, организменная ступень. Сюда относят клеточный, тканевой, органный, системный и организменные уровни организации жизни.

    Существуют также и макросистемы, которые представляют собой надорганизменную совокупность уровней.

    Стоит также отметить, что каждый уровень имеет собственные характеристики, которые и будут рассмотрены ниже.

    Доорганизменные уровни организации жизни

    Здесь принято выделять две основных ступени:

    1. Молекулярный уровень организации жизни - представляет собой уровень работы и организации биологических макромолекул, включая белки, нуклеиновые кислоты, липиды и полисахариды. Именно здесь начинаются самые важные процессы жизнедеятельности любого организма - клеточное дыхание, превращение энергии, а также передача генетической информации.

    2. Субклеточный уровень - сюда можно отнести организацию клеточных органелл, каждая из которых исполняет важную роль в существовании клетки.

    Организменные уровни организации жизни

    К этой группе можно отнести те системы, которые обеспечивают целостную работу всего организма. Принято выделять следующие:

    1. Клеточный уровень организации жизни . Ни для кого не секрет, что именно клетка является структурной единицей любого Этот уровень изучается с помощью цитологических, цитохимических, цитогенетических и

    2. Тканевый уровень . Здесь основное внимание стоит уделить строению, особенностям и функционированию разного рода тканей, из которых, собственно, и состоят органы. Исследованиями этих структур занимаются гистология и гистохимия.

    3. Органный уровень . характеризируются новым уровнем организации. Здесь некоторые группы тканей объединяются, образовывая целостную структуру со специфическими функциями. Каждый орган является частью живого организма, но не может самостоятельно существовать вне его. Этот уровень изучают такие науки, как физиология, анатомия и в некой мере эмбриология.

    Организменный уровень представляет собой как одноклеточные, так и многоклеточные организмы. Ведь каждый организм является целостной системой, внутри которой осуществляются все важные для жизнедеятельности процессы. Кроме того, во внимание берутся и процессы оплодотворения, развития и роста, а также старения отдельного организма. Изучением этого уровня занимаются такие науки, как физиология, эмбриология, генетика, анатомия, палеонтология.

    Надорганизменные уровни организации жизни

    Здесь во внимание берутся уже не организмы и их структурные части, а определенная совокупность живых существ.

    1. Популяционно-видовой уровень . Основной единицей здесь является популяция - совокупность организмов определенного вида, которая заселяет четко ограниченную территорию. Все особи способны к свободному скрещиванию друг с другом. В исследовании этого уровня участвую такие науки, как систематика, экология, генетика популяций, биогеография, таксономия.

    2. Экосистемный уровень - здесь во внимание берется устойчивое сообщество разных популяций, существование которых тесно связано между собой и зависит от климатических условий и т. д. В основном изучением такого уровня организации занимается экология

    3. Биосферный уровень - это высшая форма организации жизни, которая представляет собой глобальный комплекс биогеоценозов всей планеты.