26.11.2023

Модульное построение современного курса информатики. Реферат: Модульная технология на уроках информатики в школе. Частнометодические принципы применения программных средств в учебном процессе



Введение

Глава 1. Планирование курса обучения информатике в средней школе

1 Уровень подготовки выпускника средней школы по информатике

2 Положительные и отрицательные стороны современного школьного курса

Глава 2. Реализация курса информатики в средней школе

1 Пути совершенствования курса информатики

2 Предложения по построению школьного курса информатики

Заключение

Список используемой литературы

Приложение


Введение


С момента введения в школу курса информатики накопился значительный опыт. На первом этапе курс был ориентирован на изучение основ алгоритмизации и программирования, а в дальнейшем на освоение и применение средств информационных технологий. Однако за последние годы коренным образом переосмыслены роль и место информатики в системе научных дисциплин, растущее значение информационной деятельности в развитии общества. За это время произошли значительные изменения во взглядах на школьную информатику, обосновано огромное общеобразовательное значение изучения информатики, что обуславливает необходимость расширения задач обучения информатике в школе и соответственно целесообразность переработки содержания курса, перехода к полноценному общеобразовательному курсу.

Общеобразовательная область, представляемая в учебном плане школы курсом информатики, может быть рассмотрена в двух аспектах:

·системно-информационная картина мира, общие информационные закономерности строения и функционирования систем различной природы;

·методы и средства получения, обработки, передачи, хранения и использования информации, решение задач с помощью средств новых информационных технологий.

Педагогические функции этой общеобразовательной области - формирование основ научного мировоззрения, развитие мышление школьников, подготовка к практической деятельности, труду, продолжению образования.

Проблема исследования: Разработано множество вариантов построения школьного курса информатики. В реальной действительности эти варианты быстро устаревают в силу обстоятельств быстро растущих компьютерных знаний и не могут обеспечить актуальную подготовку выпускников школ.

Объект исследования: Определение содержания, построение, планирование школьного курса информатики для подготовки выпускника школы к жизни и профессиональной деятельности в информационном обществе.

Предмет исследования: Варианты построения школьного курса информатики рассмотрены в условиях динамичного развития вычислительной техники и расширенной сферы ее применения.

Цель исследования: Обосновать и предложить вариант построения школьного курса информатики наиболее приемлемый к школам города Нижнекамска на данном этапе информатизации общества.

Задачи исследования:

-изучение литературы по построению курсов школьных дисциплин;

-изучение литературы по построению школьного курса информатики

-изучение стандарта по информатике

-выявление положительных и отрицательных сторон в имеющихся вариантах школьного курса информатики.

Актуальность исследования: Быстрое изменение различных сфер жизни в информационном обществе требует глубокого подхода к обучению в школе, особенно это необходимо при изучении информатики. Любые изменения курса начинаются с определения его содержания и построения, поэтому исследование направлено на эту часть курса.


Глава 1. Планирование курса обучения информатике в средней школе


В последнее десятилетие целевые установки нашей системы образования существенно изменились, о чем свидетельствует новый закон об образовании, провозгласивший наивысшей ценностью личность учащегося, его самобытность, самоценность, предоставивший каждому педагогу возможность конструировать свой курс по собственному усмотрению, и множество разработок новых (и обновленных старых) образовательных, моделей, их внедрение и т.д. Целью образования в настоящее время является создание условий развития личности учащихся, его самореализации, разрешение проблем личности средствами образования.

Кроме этих объективных особенностей нашего времени, относящихся ко всему образованию, существует ряд специфических особенностей информатики, контрастно отличающих ее от других образовательных областей. К ним можно отнести:

·Стремительное развитие информационных технологий, что не только не позволяет создать относительно статические курсы в образовании, но и кроме того требует энергичного и своевременного обновления материально-технической базы, программного обеспечения, постоянного повышения квалификации педагогов;

·В последние три десятилетия мир активно шагает в информационное общество. Основная масса учащихся по собственному разумению с помощью родителей и окружающих, средств массовой информации образовывается в области информатики и информационных технологий вне школьной программы. Это приводит к резкой разноуровневости образования детей, его отрывочному или поверхностному содержанию и не может служить основой для формирования информационной культуры;

·Педагогический ресурс преподавателей информатики в целом по стране выращен слабо. Многие преподаватели это выпускники математических факультетов университетов, технических вузов, которые не имели специальной подготовки преподавателя информатики. В силу этих причин преподаватели предъявляют принципиально различные целеполагания в преподавании курсов информатики и ИТ. В то время как именно целеполагание определяет деятельность в функциональном плане, позволяет осознать образ будущих результатов деятельности. Кроме того, по той же причине лишь недавно стали появляться учебники отвечающие педагогическим требованиям. Но таких немного и они не покрывают потребности современного образовательного процесса.

Учитывая названные причины, мы строим целеполагание в курсе информатики и ИТ прежде всего на основе личностно- ориентированной модели образования. Целью курса тогда становится создание условий для проявления и развития «самости» учащегося на основе средств и предметной области курсов информатики и ИТ, сохраняя его самобытность, поддерживая, создавая ситуации для самоутверждения, присвоения социального опыта, творческого подхода к осмыслению настоящего и апробирования элементов будущего. Далее, исходя из объявленной цели, мы определяем необходимые условия конструирования содержания и технологий образования:

·Учет интересов и целей каждого учащегося на основе личностного целеполагания, рефлексии и осуществлении проектной деятельности;

·Конструирование многообразного и многофункционального содержания учебного курса, что позволяет учесть особенности и потребности каждого ребенка. Участие самого ребенка в построении личностно-значимого содержания обеспечивается возможностью свободного выбора элементов (модулей), и их нелинейной комбинации;

·Создание продуктивного образовательного поля, возможности для творчества, активности, самостоятельности, самоуправления;

·Преемственность в содержании, возможность учета ситуативных моментов и расширение его границ с использованием субъективного опыта учащихся;

Для выполнения объявленных задач используем:

.Модульный подход в построении всего курса информатики и ИТ с предоставлением учащимся свободы выбора модуля;

.Элементы нелинейных технологии;

.Индивидуализацию в каждом модуле, теме, занятии на основе личностного целеполагания и рефлексии деятельности самими учащимися;

.Систему интеллектуальных соревнований. Под интеллектуальными соревнованиями мы понимали учебное развивающее мероприятие, отличающееся по содержанию - проблемностью, нестандартными заданиями, по форме - продуктивной активностью участников, методам - активизирующим мыслительную деятельность, партнерским стилем отношений. Интеллектуальные соревнования непременно включают в себя продуктивный мыслительный акт. На интеллектуальных соревнованиях усвоение содержания образования происходит в условиях дидактико-коммуникативной среды, обеспечивающей субъектно-смысловое общение, рефлексию, самореализацию личности. Содержательная часть интеллектуальных соревнований составляет вопросы и проблемы, исходящие из личностного опыта учащихся, при решении которых формируется собственный смысл учебного материала, а диалог выступает фактором актуализации смыслообразующей, рефлексивной и других функций личности;

.Проектный метод используется как основная технология в преподавании ряда модулей, либо как элемент педагогических технологий в других. Использование проектного метода на последней ступени курса создает условия для самоуправления, поиска информации, самоутверждения в образовательной среде.

.Совместная деятельность всех участников личностно ориентированной модели образования реализуется через сотрудничество, когда все отношения партнерские, а все участники деятельности переходят в позицию субъекта. Сотрудничество - условие выращивания диалогичности и самоизменения каждого субъекта образовательной деятельности.

Весь курс разбит на модули, каждый из которых может быть при устаревании удален, доработан или обновлен полностью. Модули разделены на три ступени (вход на каждую зависит от желаний и готовности учащегося): пропедевтическая, технологическая, проектная. Учебные коллективы, в силу описанных выше причин, разновозрастные. Технологии обучения максимально индивидуализированы и позволяют учесть возраст учащегося и его подготовки в процессе занятий. Содержание внутри модулей на технологической и проектной ступенях определяется в совместном его конструировании педагогом и учащимся.

школьный курс информатика образование

1.1 Уровень подготовки выпускника средней школы по информатике


По окончании школьного курса информатики выпускник должен (обязан) иметь следующие знания, умения, навыки для продолжения обучения и полноценной жизни в информационном обществе:

1. Человек и информация

Учащиеся должны знать:

  1. определение информации в соответствии с содержательным подходом и кибернетическим (алфавитным) подходом;
  2. что такое информационные процессы;
  3. какие существуют носители информации;
  4. функции языка, как способа представления информации; что такое естественные и формальные языки;
  5. как определяется единица измерения информации - бит;
  6. что такое байт, килобайт, мегабайт, гигабайт;
  7. в каких единицах измеряется скорость передачи информации;
  8. что такое система счисления; в чем различие между позиционными и непозиционными системами счисления;
  9. основные этапы в истории развития средств хранения, передачи и обработки информации до изобретения ЭВМ

Учащиеся должны уметь:

  1. приводить примеры информации и информационных процессов из области человеческой деятельности, живой природы и техники;
  2. определять в конкретном процессе передачи информации источник, приемник, канал;
  3. приводить примеры информативных и неинформативных сообщений;
  4. приводить примеры сообщений, несущих 1 бит информации;
  5. измерять информационный объем текста в байтах (при использовании компьютерного алфавита);
  6. пересчитывать количество информации в различных единицах (битах, байтах, Кб, Мб, Гб);
  7. рассчитывать скорость передачи информации по объему и времени передачи, а также решать обратные задачи;
  8. переводить целые числа из десятичной системы счисления в другие системы и обратно;
  9. выполнять простейшие арифметические операции с двоичными числами;

2. Первое знакомство с компьютером

Учащиеся должны знать:

  1. правила техники безопасности при работе на компьютере;
  2. состав основных устройств компьютера, их назначение и информационное взаимодействие;
  3. основные характеристики компьютера в целом и его узлов (различных накопителей, устройств ввода и вывода информации);
  4. структуру внутренней памяти компьютера (биты, байты); понятие адреса памяти;
  5. типы и свойства устройств внешней памяти;
  6. типы и назначение устройств ввода-вывода;
  7. сущность программного управления работой компьютера.
  8. принципы организации информации на дисках: что такое файл, каталог (папка), файловая структура;
  9. назначение программного обеспечения и его состав.

Учащиеся должны уметь:

  1. включать и выключать компьютер;
  2. пользоваться клавиатурой;
  3. вставлять дискеты в накопители;
  4. ориентироваться в типовом интерфейсе: пользоваться меню, обращаться за справкой, работать с окнами;
  5. инициализировать выполнение программ из программных файлов;
  6. просматривать на экране директорию диска;
  7. выполнять основные операции с файлами и каталогами (папками): копирование, перемещение, удаление, переименование, поиск.

3. Текстовая информация и компьютер.

Учащиеся должны знать:

  1. способы представления символьной информации в памяти ЭВМ (таблицы кодировки, текстовые файлы);
  2. назначение текстовых редакторов (текстовых процессоров);
  3. основные режимы работы текстовых редакторов (ввод-редактирование, печать, орфографический контроль, поиск и замена, работа с файлами);

Учащиеся должны уметь:

  1. набирать и редактировать текст в одном из текстовых редакторов;
  2. выполнять основные операции над текстом, допускаемые этим редактором;
  3. сохранять текст на диске, загружать его с диска, выводить на печать;

4. Графическая информация и компьютер

Учащиеся должны знать:

  1. способы представления изображений в памяти ЭВМ; понятия о пикселе, растре, кодировке цвета, видеопамяти;
  2. какие существуют области применения компьютерной графики;
  3. назначение графических редакторов;
  4. назначение основных компонентов среды графического редактора: рабочего поля, меню инструментов, графических примитивов, палитры, ножниц, ластика и пр;

Учащиеся должны уметь:

  1. строить несложные изображения с помощью одного из графических редакторов;
  2. сохранять рисунки на диске и загружать с диска; выводить на печать;

5. Передача информации в компьютерных сетях

Учащиеся должны знать:

  1. что такое компьютерная сеть; в чем различие между локальными и глобальными сетями;
  2. назначение основных технических и программных средств функционирования сетей: каналов связи, модемов, серверов, клиентов, протоколов;
  3. назначение основных видов услуг глобальных сетей: электронной почты, телеконференций, распределенных баз данных и др;
  4. что такое Internet; какие возможности предоставляет пользователю Всемирная паутина - WWW;

Учащиеся должны уметь:

  1. осуществлять обмен информацией с файл-сервером локальной сети или с рабочими станциями одно-ранговой сети.

6. Введение в информационное моделирование

Учащиеся должны знать:

  1. что такое модель; в чем разница между натурной и информационной моделью;
  2. какие существуют формы представления информационных моделей (графические, табличные, вербальные, математические);

Учащиеся должны уметь:

  1. приводить примеры натурных и информационных моделей;
  2. ориентироваться в таблично-организованной информации;
  3. описывать объект (процесс) в табличной форме для простых случаев;

7. Базы данных

Учащиеся должны знать:

  1. что такое база данных, СУБД, информационная система;
  2. что такое реляционная база данных, ее элементы (записи, поля, ключи); типы и форматы полей;
  3. структуру команд поиска и сортировки информации в базах данных;
  4. что такое логическая величина, логическое выражение;
  5. что такое логические операции, как они выполняются.

Учащиеся должны уметь:

  1. открывать готовую БД в одной из СУБД реляционного типа;
  2. организовывать поиск информации в БД;
  3. редактировать содержимое полей БД;
  4. сортировать записи в БД по ключу;

8. Табличные вычисления на компьютере

Учащиеся должны знать:

  1. что такое электронная таблица и табличный процессор;
  2. основные информационные единицы электронной таблицы: ячейки, строки, столбцы, блоки и способы их идентификации;
  3. какие типы данных заносятся в электронную таблицу; как табличный процессор работает с формулами;
  4. основные функции (математические, статистические), используемые при записи формул в ЭТ;
  5. графические возможности табличного процессора.

Учащиеся должны уметь:

  1. открывать готовую электронную таблицу в одном из табличных процессоров;
  2. редактировать содержимое ячеек; осуществлять расчеты по готовой электронной таблице;
  3. выполнять основные операции манипулирования с фрагментами ЭТ: копирование, удаление, вставка, сортировка;
  4. получать диаграммы с помощью графических средств табличного процессора;
  5. создавать электронную таблицу для несложных расчетов.

9. Искусственный интеллект и базы знаний

Учащиеся должны знать:

  1. что такое модель знаний, база знаний;
  2. из чего строится логическая модель знаний;
  3. какие проблемы решает раздел информатики Искусственный интеллект.

Учащиеся должны уметь:

  1. различать декларативные и процедурные знания, факты и правила.

10. Информация и управление

Учащиеся должны знать:

  1. что такое Кибернетика; предмет и задачи этой науки;
  2. сущность кибернетической схемы управления с обратной связью; назначение прямой и обратной связи в этой схеме;
  3. что такое алгоритм управления; какова роль алгоритма в системах управления;
  4. в чем состоят основные свойства алгоритма;
  5. способы записи алгоритмов: блок-схемы, учебный алгоритмический язык;
  6. основные алгоритмические конструкции: следование, ветвление, цикл; структуры алгоритмов;
  7. назначение вспомогательных алгоритмов; технологии построения сложных алгоритмов: метод последовательной детализации и сборочный (библиотечный) метод.

Учащиеся должны уметь:

  1. при анализе простых ситуаций управления определять механизм прямой и обратной связи;
  2. пользоваться языком блок-схем, понимать описания алгоритмов на учебном алгоритмическом языке;
  3. выполнить трассировку алгоритма для известного исполнителя;
  4. составлять несложные линейные, ветвящиеся и циклические алгоритмы управления одним из учебных исполнителей;
  5. выделять подзадачи; определять и использовать вспомогательные алгоритмы.

11. Как работает компьютер

Учащиеся должны знать:

  1. представление целых положительных чисел в памяти компьютера;
  2. структуру машинной команды;
  3. состав процессора и назначение входящих в него элементов (арифметико-логического устройства, устройства управления, регистров);
  4. как процессор выполняет программу (цикл работы процессора);
  5. основные этапы развития информационно-вычислительной техники, программного обеспечения ЭВМ и информационных технологий.

Учащиеся должны уметь:

  1. переводить целые положительные числа во внутреннее машинное представление;
  2. осуществлять переход между двоичной и шестнадцатеричной формой внутреннего представления информации

12. Введение в программирование

Учащиеся должны знать:

  1. назначение языков программирования;
  2. в чем различие между языками программирования высокого уровня и машинно-ориентированными языками;
  3. что такое трансляция;
  4. назначение систем программирования;

Учащиеся должны уметь:

  1. работать с готовой программой на одном из языков программирования высокого уровня.

1.2 Положительные и отрицательные стороны современного школьного курса


В последние годы в развитии информатики как учебной дисциплины наблюдается кризис, вызванный тем, что:

задача 1-го этапа введения школьного предмета информатика в основном выполнена;

Все школьники знакомятся с основными компьютерными понятиями и элементами программирования. Пока решалась эта задача, передний край научной и практической информатики ушел далеко вперед, и стало неясно, в каком направлении двигаться дальше;

Исчерпаны возможности учителей информатики, как правило, либо не являющимися профессиональными педагогами, либо не являющимися профессиональными информатиками и прошедшими лишь краткосрочную подготовку в институте усовершенствования учителей;

Отсутствуют взвешенные, реалистичные учебники;

Из-за различия условий для преподавания информатики в различных школах (разнообразия типов средств вычислительной техники) и появившейся у школ относительной свободы в выборе профилей классов, учебных планов и образовательных программ появился значительный разброс в содержании обучения информатики.

В существенной степени проявилось и изменение парадигмы исследований в области информационных технологий и их приложении на практике. В начальный период своего существования школьная информатика питалась в основном идеями из практики использования информационных технологий в научных исследованиях, технической кибернетике, АСУ и САПР. В связи с кризисом финансирования научных учреждений и исследований, фактической остановкой наукоемких производств и их перепрофилированием общая научная ориентация курса информатики утратила актуальность. Значительно снизилась исходная мотивация школьников к изучению научно-ориентированных предметов и успеваемость по ним. Явно проявляется социальный запрос, направленный на бизнес ориентированные применения информационных технологий, пользовательские навыки использования персональных компьютеров для подготовки и печати документов, бухгалтерских расчетов и т.д. Однако, большинство общеобразовательных учебных заведений не готово к реализации этого запроса в силу отсутствия соответствующей учебной вычислительной техники и недостаточной подготовке учителей информатики.

Компьютер является не просто техническим устройством, он предполагает соответствующее программное обеспечение. Решение указанной задачи связано с преодолением трудностей, обусловленных тем, что одну часть задачи - конструирование и производство ЭВМ - выполняет инженер, а другую - педагог, который должен найти разумное дидактическое обоснование логики работы вычислительной машины и логики развертывания живой человеческой деятельности учения. В настоящее время последнее приносится пока что в жертву логике машинной; ведь для того чтобы успешно работать с компьютером, нужно, как отмечают сторонники всеобщей компьютеризации, обладать алгоритмическим мышлением.

Другая трудность состоит в том, что средство является лишь одним из равноправных компонентов дидактической системы наряду с другими ее звеньями: целями, содержанием, формами, методами, деятельностью педагога и деятельностью учащегося. Все эти звенья взаимосвязаны, и изменение в одном из них обусловливает изменения во всех других. Как новое содержание требует новых форм его организации, так и новое средство предполагает переориентацию всех других компонентов дидактической системы. Поэтому установка в школьном классе или вузовской аудитории вычислительной машины или дисплея есть не окончание компьютеризации, а ее начало - начало системной перестройки всей технологии обучения.

Преобразуется прежде всего деятельность субъектов образования - учителя и ученика, преподавателя и студента. Им приходится строить принципиально новые отношения, осваивать новые формы деятельности в связи с изменением средств учебной работы и специфической перестройкой ее содержания. И именно в этом, а не в овладении компьютерной грамотностью учителями и учениками или насыщенности классов обучающей техникой, состоит основная трудность компьютеризации образования.

Выделяются три основные формы, в которых может использоваться компьютер при выполнении им обучающих функций: а) машина как тренажер; б) машина как репетитор, выполняющий определенные функции за преподавателя, причем машина может выполнять их лучше, чем человек; в) машина как устройство, моделирующее определенные предметные ситуации. Возможности компьютера широко используются и в такой неспецифической по отношению к обучению функции, как проведение громоздких вычислений или в режиме калькулятора.


Глава 2. Реализация курса информатики в средней школе


Изучение программирования, прежде всего, служит более глубокому пониманию процессов создания и функционирования компьютерных прикладных программ, выполняет развивающую функцию (что крайне важно при обучении школьников!). Как известно, часов под предмет отводится немного. Но, учитывая сегодняшнюю школьную действительность (перенасыщение общего учебного плана общеобразовательной школы, перегруженность учащихся), когда даже специализированные в области информатики учебные заведения не могут себе позволить существенное увеличение часов в учебном плане, учителям информатики приходится с этим мириться. В этой связи одним из важнейших факторов улучшения качества преподавания предмета становится наиболее оптимальное определение состава тем и совершенствование организационной формы их подачи.

Отмеченная выше специфика структуры предмета зачастую подталкивает учителя к выбору приоритетов в процессе обучения: отдать предпочтение общетеоретической, программной или программистской части. И порой осуществляется перекос в построении курса в ту или другую сторону.

Тем не менее, на мой взгляд, в данном случае вопрос о выборе приоритетов ставить нецелесообразно, хотя, безусловно, в рамках упомянутой структуры определенные акценты в учебной программе предмета должны быть расставлены посредством наиболее оптимального подбора тем. В целом же необходимо исходить из одинаковой важности общетеоретической, программной и программистской (развивающей у учащихся алгоритмический образ мышления и позволяющей им освоить принципы алгоритмизации и базовые элементы программирования) частей.

На мой взгляд, важнейшую роль играет, прежде всего, эффективная организация процесса обучения. Именно на организационном уровне возможно решение многих возникающих в учебном процессе проблем. Можно выделить следующие основные принципы организации обучения информатике:

) Жесткое разделение теоретических и лабораторно-практических занятий. Причем теоретические занятия желательно проводить НЕ в компьютерном классе. Опыт работы свидетельствует о том, что наличие компьютеров (даже выключенных) на таких занятиях действует отвлекающее и мешает учебному процессу. Общеизвестно, что многие учителя вообще не осуществляют подобного разделения, а 90% учителей проводят теоретические занятия в компьютерном классе (правда, иногда и из-за отсутствия в школе дополнительных свободных помещений). Тем не менее именно такое жесткое деление дисциплинирует как учащихся, так и учителя; способствует систематизации изучаемого материала, лучшей концентрации внимания учащихся, улучшению восприятия и повышению качества применения изученного теоретического материала при выполнении практических заданий. Метод некоторых учителей объяснил и сразу попробовали на компьютере, как правило, не улучшает, а только ухудшает процесс усваивания материала. Использование подобных методов возможно лишь при изучении работы с некоторыми прикладными программами, когда неприемлемым становится объяснение на пальцах, и только при недостаточной технической оснащенности школы, поскольку в таких случаях наиболее оптимальным является объяснение с использованием демонстрационного экрана. На теоретических занятиях необходима строго систематизированная подача материала с выполнением учащимися соответствующих записей в тетрадях.

) Параллельное преподавание общетеоретического, программного и программистского блоков курса - т. е. чередование соответствующих тем. Помимо постепенного изучения тем каждого из блоков курса, такой форме преподавания способствует также необходимость отработки на практических занятиях пройденного теоретического материала по программированию. При этом для обеспечения систематизированных записей учащимся необходимо иметь отдельные тетради для каждого из блоков курса.

) Выполнение учащимися под руководством преподавателя, помимо практических заданий по программированию на компьютерах, тренировочных упражнений и заданий в устной и письменной форме БЕЗ компьютера. Такая форма занятий способствует развитию алгоритмического мышления, воспитанию алгоритмической культуры и внутреннему пониманию языка программирования.

) Помимо контролирующих мероприятий на компьютерах, обязательное проведение письменных самостоятельных и контрольных работ с целью проверки уровня знаний.

Перечисленные выше принципы позволяют в условиях объективно сложившейся к настоящему времени высокой плотности и разносторонности курса предмета Информатика существенно повысить эффективность его преподавания, качество усвоения учащимися учебного материала.


2.1 Пути совершенствования курса информатики


Анализ опыта преподавания курса основ информатики и вычислительной техники, новое понимание целей обучения информатике в школе, связанное с углублением представлений об общеобразовательном, мировоззренческом потенциале этого учебного предмета показывают необходимость выделения нескольких этапов овладения основами информатики и формирования информационной культуры в процессе обучения в школе.

Первый этап (II - IV классы) - пропедевтический. На этом этапе происходит первоначальное знакомство школьников с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров и т. д.

На втором этапе (V - VI классы) происходит углубление первоначальных знаний, закрепление навыков использования компьютера в повседневной жизни.

Третий этап (VII- IX классы) - базовый курс, обеспечивающий обязательный общеобразовательный минимум подготовки школьников по информатике. Он направлен на овладение учащимися методами и средствами информационной технологии решения задач, формирование навыков сознательного и рационального использования компьютера в своей учебной, а затем профессиональной деятельности. Изучение базового курса формирует представления об общности процессов получения, преобразования, передачи и хранения информации в живой природе, обществе, технике.

Целесообразность переноса начала систематического изучения информатики в V - IX классы помимо необходимости в условиях информатизации школьного образования широкого использования знаний и умений по информатике в других учебных предметах на более ранней ступени обусловлена также двумя другими факторами: во-первых, положительным опытом обучения информатике детей этого возраста как в нашей стране, так и за рубежом и, во-вторых, существенной ролью изучения информатики для развития мышления, формирования научного мировоззрения школьников именно этой возрастной группы. Представляется, что содержание базового курса может сочетать в себе все три существующие сегодня основные направления обучения информатике в школе, отражающие важнейшие аспекты общеобразовательной значимости информатики:

) мировоззренческий аспект, связанный с формированием представлений о системно-информационном подходе к анализу окружающего мира, о роли информации в управлении, специфике самоуправляющихся систем, общих закономерностях информационных процессов в системах различной природы;

) пользовательский аспект, связанный с формированием компьютерной грамотности, подготовкой школьников к практической деятельности в условиях широкого использования информационных технологий;

) алгоритмический (программистский) аспект, связанный в настоящее время уже в большей мере с развитием мышления школьников.

Четвертый этап (Х - XI классы) - продолжение образования в области информатики как профильного обучения, дифференцированного по объему и содержанию в зависимости от интересов и направленности допрофессиональной подготовки, школьников.

Данная программа объединяет несколько программ обучения, а также дополняет их. В частности, программа третьего и четвертого этапов соответствует государственному стандарту и дополнена более глубоким изучением предлагаемых в стандарте программ и дополнительным изучением программного обеспечения (издательских систем, пакета программ Corel).

Программа первого (пропедевтического) этапа обучения основана на совмещении двух линий - алгоритмической и пользовательской. Урок в II - IV классах делится на две половины (по 20 - 25 мин). Первая половина урока отводится на изучение алгоритмической линии (безмашинный метод), вторая половина - пользовательской линии (с применением компьютера). Деление урока обусловлено тем, что детям 6 - 10 лет по медицинским показаниям не рекомендуется проводить за компьютером непрерывно более 20 - 25 мин.

Программа пользовательского аспекта для учащихся II - XI классов приведена ниже.

Представляет собой программы обучения по двум линиям обучения (алгоритмической и пользовательской) (II - IV классы) и по пользовательской линии (V - XI классы), соответствующей программе курса.


2.2 Предложения по построению школьного курса информатики


Основные направления совершенствования профильного обучения информатике в старших классах общеобразовательной школы.

Развитие содержания профильного обучения информатике:

·с учетом тенденции к усилению общеобразовательных мировоззренческих функций информатики как учебного предмета в инвариантной части курса следует расширить содержание таких линий, как линия информационных процессов, представление информации, формализация и моделирование, телекоммуникации;

·необходимо предусмотреть в содержании обучения вопросы представления и использования информации, а не только рассмотрения вопросов процесса обработки информации на основе алгоритмов, т.е. рассмотреть вопросы об информационных основах процессов управления, что имеет важное мировоззренческое и практическое значение;

·линия информационных технологий должна получить дальнейшее развитие, в ряде аспектов следует изменить методику изучения информационных технологий - важным аспектом методики обучения информационным технологиям является развитие единого подхода к их изучению, формирование представлений о научных основах информационных технологий, а реализация этого подхода может быть отражена на основе следующих принципов:

o- изучение информационных технологий не должно быть сведено к освоению конкретных средств информационных и коммуникационных технологий, необходимо, прежде всего, формировать научные основы, базу для освоения новых технологий;

o- необходимой предпосылкой усвоения информационных технологий является предварительное изучение вопросов строения, видов, свойств, форм представления и т.д. информации, способов ее записи, алгоритмов ее преобразования, которые рассматриваются в курсе информатики;

o- при изучении информационных технологий, с одной стороны, должны получить развитие и конкретизацию все основные содержательные линии общеобразовательного курса информатики (информации, представления информации, информационных процессов, алгоритмов, формализации и моделирования, информационных технологий, телекоммуникаций), с другой стороны, эти содержательные линии выступают научной основой изучаемых информационных технологий;

o- ключевыми вопросами изучения информационных технологий, обеспечивающими единство методического подхода к их изучению, являются вопросы единства средств и методов представления информации разного типа, функциональной полноты и минимизации операций по обработке информации, алгоритмической основы реализации технологий.

oопределить содержание вариативных частей профильных курсов информатики в соответствии с современными представлениями о профильной дифференциации содержания обучения информатике на старшей ступени школы.

Совершенствование организации учебного процесса (методов, средств и организационных форм обучения) по информатике на старшей ступени школы в условиях профильного обучения:

·обеспечение учебного процесса учебно-методической литературой;

·увеличение учебного времени на изучение информатики;

·применение новых методов обучения (метод учебных проектов и т.д.), направленных на реализацию личностно-ориентированного подхода к обучению;

·организация не только фронтальной работы, но и групповой и индивидуальной работы учащихся;

·обновление программных средств, используемых в поддержку изучаемого материала курса;

·развитие системы дополнительного образования (дополнительные занятия, факультативы, кружки, организация курсов дистанционного обучения с использованием сети Интернет и пр.);

·предоставление во внеурочное время возможности ученикам самостоятельной работы за компьютером с выходом в Интернет.

Создание условий для реализации эффективного профильного обучения информатике в старших классах школы:

·оснащение учебных заведений современными средствами информатизации (компьютерами с соответствующим программным обеспечением, сканер и другие средства информатизации);

·подключение к сети Интернет;

·повышение квалификации учителей информатики.


Заключение


Любая педагогическая деятельность, естественно, должна начинаться с осмысления ее цели. На выбор цели преподавания конкретной дисциплины существенное влияние оказывают целевые установки всей системы образования, место и роль учебной дисциплины в общем содержании образования, ее особенности, интересы и потребности учащихся.

Цель обучения на современном этапе определяется как обеспечение прочного и сознательного овладения учащимися основами знаний о процессах преобразования, передачи и использования информации и на этой основе раскрытие учащимся значения информационных процессов в формировании современной научной картины мира, роли информационной технологии и вычислительной техники в развитии современного общества; привитие им навыков сознательного и рационального использования компьютеров в своей учебной, а затем профессиональной деятельности.

Исходя из опыта работы наиболее оптимальной структурой базового курса предмета Основы информатики и вычислительной техники представляется его построение из трех крупных равноправных тематических блоков: общетеоретического, блока системных и прикладных программ и блока основ программирования. Такое построение курса объективно оправдывается стоящей перед ним основной задачей, которая заключается в формировании у учащихся определенного фундамента знаний в сфере компьютерных информационных технологий и соответствующего культурного уровня. А это подразумевает в равной степени и знание принципов функционирования ЭВМ, и навыки работы с современными программными продуктами, и алгоритмический образ мышления со знанием базовых элементов программирования.

Сегодня, когда спорят о том, нужен ли какой-либо учебный раздел или даже предмет в школе, часто отталкиваются от того, пригодятся ли эти знания в жизни…

Прежде всего хочу сказать, что критерий «не пригодится в жизни» - это вообще не критерий. Или, во всяком случае, неверно сформулированный критерий.

Лично я наиболее продуктивным считаю такой: давайте спросим себя, что нужно изучать в российской школе, чтобы ее выпускники стали более конкурентоспособными на мировом рынке труда.

Информатика дает несколько особых знаний и умений, без которых невозможно ни быть успешным на рынке труда сегодня, ни получить образование, которое позволит остаться успешным завтра. Во-первых, школьники должны овладеть каким-то языком для описания новой информатической реальности. Козьма Прутков замечательно сформулировал: «Многие вещи нам недоступны не потому, что наши понятия слабы, а потому, что сии вещи не входят в круг наших понятий». Только кажется, что этот язык будет освоен автоматически, в «процессе жизни»…

Второй очень важный момент. Информатика должна развивать алгоритмический стиль мышления, который, кстати, не способна в полной мере развить математика. Задачи на составление алгоритмов и кодирование информации - это интеллектуальный тренинг, который, грубо говоря, делает людей умнее. Исторически сложилось несколько систематических курсов - «практикумов», которые были призваны делать людей умнее. За пределами математики были успешны практикумы по «мертвым» языкам - латыни и греческому. Их грамматическая система была достаточно сложной и представляла собой некоторую формальную систему, практическое освоение которой требовало систематических интеллектуальных усилий. Еще одна формальная система, некогда популярная в образовании, - римское право. Навыки, развитые в курсе информатики, дают существенный вклад в уровень общей интеллектуальной подготовки. А этот уровень на современном рынке труда ценится не меньше, чем конкретные навыки.

Но, в-третьих, и конкретные навыки очень важны. В Америке школьник лупит по клавиатуре, не глядя на нее, со скоростью 60 слов в минуту. «Клавиатурная грамотность» американских школьников есть национальное достояние США. Страна, в которой школьникам дают возможность научиться этому, богаче и мощнее, чем та страна, в которой школьники в своей массе этого не умеют. Без «клавиатурной грамотности» успешная карьера сегодня труднопредставима. То же верно и для так называемой «компьютерной грамотности».


Список используемой литературы


1.Закон РФ «об образовании».

.О направлении дополнительных вариантов учебных планов средних общеобразовательных школ на 1989/90 учебный год //Информ. сб. М-ва народного образования РСФРС. - 1989. - №32.

.О направлении учебных планов на 1990/92 учебный год. Письмо Минобразования РСФРС от 25.01.91 №1369/15 //Вестник образования. Справочно-информационное издание М-ва образования РСФРС. - 1991. -№3. - С.62-78.

.Основные компоненты содержания информатики в образовательных учреждениях. Приложение 2 к решению Коллегии Минобразования РФ от 22 февраля 1995 №4/1//ИНФО.- 1995.-№4.- С.17-36.

.Самовольнова Л.Е. Курс информатики и базисный учебный план //ИНФО. - 1993.- №3.

.Уваров А.Ю. Информатика в школе: вчера, сегодня, завтра //ИНФО. - 1990. - №4.

.Хеннер Е.К. Проект стандарта образования по основам информатики и вычислительной технике //ИНФО. - 1994. - №2.

.Горячев А.В. О понятии «Информационная грамотность» // Информатика и образование. - 2001. - №№3,8.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Модульное обучение в школе заключается в последовательном усвоении учеником модульных единиц и модульных элементов. Гибкость и вариативность модульной технологии профессионального обучения особенно актуальны в условиях рыночных отношений при количественных и качественных изменениях рабочих мест, перераспределении рабочей силы, необходимости массового переобучения работников. Нельзя не учитывать и фактор кратковременности обучения в условиях ускоренных темпов научно-технического прогресса.

Актуальность данной работы заключается в том, что быстроразвивающийся технический прогресс диктует новые условия для обучения и предъявляет новые требования в профессии. В рамках обучения учащийся частично или полностью самостоятельно может работать с предложенной ему учебной программой, которая содержит в себе целевую программу действий, базы информации и методическое руководство для достижения поставленных дидактических целей.

В этом случае функции преподавателя могут изменяться от информационно-контролирующих до консультационно-координирующих. Технология модульного обучения базируется на объединении принципов системного квантования и модульности. Первый принцип составляет методологическую основу теории «сжимания», «сворачивания» учебной информации. Второй принцип является нейрофизиологической основой метода модульного обучения. При модульном обучении нет строго заданного срока обучения.

Он зависит от уровня подготовленности учащегося, его предыдущих знаний и умений, желаемого уровня получаемой квалификации. Обучение может прекратится после овладения любого модуля. Учащийся может выучить один или несколько модулей и в дальнейшем получить узкую специализацию или овладеть всеми модулями и получить широкопрофильную профессию. Для выполнения работы все модульные единицы и модульные элементы можно не изучать, а только те, которые необходимы для выполнения работы с конкретными требованиями. С другой стороны, профессиональные модули могут состоять из модульных единиц, которые относятся к разным специальностям и разным областям деятельности.

Целью данной работы является изучение модульных технологий на уроках информатики в школе.

Достижение данной цели способствует решение следующих задач:

Рассмотреть особенности модульной технологии обучения в школе;

Изучить методику модульной технологии обучения в школе;

Применить практически методику модульной технологии на уроке в общеобразовательной школе.

Объектом исследования является построение урока информатики в школе с применением модульных технологий в обучающем процессе. Предметом исследования является применение модульных технологий в процессе урока информатики в общеобразовательной средней школе.

При написании данной работы использовалась специальная литература, методические пособия, справочники, учебники для ВУЗов.


её модернизации на основании интегрирования предметов

Сегодня главной в образовании является предметная система обучения. Если посмотреть на источники ее создания, то можно увидеть, что она создана в начале интенсивного развития и дифференциации наук, быстрого увеличения знаний в разных областях человеческой деятельности.

Дифференциация наук привела к созданию огромного количества предметов (дисциплин). Наиболее наглядно это проявилось в школьном и профессиональном обучении, учащиеся учебных заведений изучают до 25 предметов, которые слабо связаны между собой. Известно, что каждая конкретная наука является логической системой научных знаний, методов и средств познания .

Цикл специальных предметов представляет собой синтез фрагментов научно-технических и производственных знаний и видов производственной деятельности. Предметная система является эффективной при подготовке учащихся и студентов по фундаментальным и некоторым прикладным дисциплинам, в которых теоретические знания и практические умения в конкретных областях знаний или деятельности приведены в систему. Предметная система органично вписалась в классно-урочную форму организации обучения.

К другим преимуществам предметной системы обучения можно отнести сравнительно простую методику составления учебно-программной документации и подготовку преподавателя к занятиям. В то же время предметная система имеет существенные недостатки, основными из которых являются:

Системность знаний в учебных предметах связана с большим количеством фактического учебного материала, терминологической загруженностью, неопределенностью и несогласованностью объема учебного материла с уровнем его сложности;

Большое количество предметов неизбежно ведет к дублированию учебного материала и связана с увеличением времени на обучение;

Не согласованная учебная информация, которая поступает от разных предметов, усложняет для учеников ее систематизацию и, как следствие, затрудняет формирование из них целостной картины окружающего мира;

Поиск межпредметных связей усложняет учебный процесс и не всегда позволяет систематизировать знания учащихся;

Предметное обучение, как правило, носит информационно-репродуктивный характер: ученики получают «готовые» знания, а формирование умений и навыков достигается путем воссоздания образцов деятельности и увеличения количества исполнения ими заданий. Это не обеспечивает эффективность обратных связей и, как следствие, усложняется управление обучения учащихся, что приводит к снижению его качества;

Поточный учет успешности учащихся, как один из важных инструментов совершения обратных связей, недостаточно эффективен из-за относительно больших (15-20%) ошибок знаний и умений учащихся по субъективной методике преподавателей;

Разнообразность предметов, которые одновременно изучаются, большой объем разнопланового по подобности учебного материала приводит к перегруженности памяти учащихся и к невозможности реального усвоения учебного материала всеми учащимися;

Жесткая структура учебно-программной документации, лишняя регламентация учебного процесса, которые включают жесткие временные рамки урока и сроков обучения;

Слабая дифференциация обучения, ориентирование на «среднего» учащегося;

Преимущественно фронтально-групповая организационная форма обучения вместо индивидуальной .

Из практики профессионального обучения известно, что учащиеся лучше воспринимают и усваивают комплексные интегрированные знания. Поэтому возникает необходимость создания соответствующей системы обучения, разработки теоретических основ и методик интегрирования предметов, разработки учебных программ на блочно-модульной основе и содержания дидактических элементов.

Модульная система обучения была разработана Международной организацией труда (МОТ) в 70-х годах двадцатого века как обобщение опыта подготовки рабочих кадров в экономически развитых странах мира.

Эта система быстро распространилась по всему миру и, по сути, стала международным стандартом профессионального обучения. Она обеспечивает мобильность трудовых ресурсов в условиях НТП и быстрое переобучение работников, которые освобождаются при этом. Модульная система разрабатывалась в рамках популярной тогда индивидуализированной системы обучения Ф. Келлера, поэтому включило в себя ряд позитивных моментов:

Формирование конечных и промежуточных целей обучения;

Распределение учебного материала на отдельные разделы;

Индивидуализированные темпы обучения;

Возможность перехода к изучению нового раздела, если полностью усвоен предыдущий материал;

Регулярный тестовый контроль знаний .

Появление модульного метода – попытка ликвидировать недостатки следующих существующих методов учебной подготовки:

Направленность профессиональной подготовки на получение профессии в общем, а не на выполнение конкретной работы, что мешало устраиваться на работу выпускникам учебных заведений;

Негибкость подготовки относительно требований отдельных производств и технологичных процессов;

Несоответствие подготовки довольно сильно дифференцированному общеобразовательному уровню разных групп населения;

Отсутствие учета индивидуальных особенностей учеников.

Главное в модульном обучении – возможность индивидуализации обучения. С точки зрения Дж. Рассела, наличие альтернативных (выборочных) модулей и свободный их выбор позволяет всем ученикам усвоить учебный материал, но в индивидуальном темпе. Важно, чтоб задания для учеников были настолько сложны, чтоб они работали с напряжением своих умственных способностей, но, вместе с тем, настолько сложными, чтоб не было навязчивого педагогического руководства.

В потребности вольного выбора модуля из альтернативного набора скрывается одна из возможностей формирования готовности к выбору как черты личности, важной также и для формирования самостоятельности в образовании. В то же время при индивидуализированной системе обучения от учащегося требуется полное усвоение учебного материала с конкретным испытанием по каждому модулю. Гибкость модульного обучения. Дж. Рассел представляет модуль, как единицу учебного материала, которая отвечает отдельной теме.

Модули могут группироваться в разные комплекты. Один и тот же модуль может отвечать отдельным частям требований, которые касаются разных курсов. Добавляя «новые» и исключая «старые», можно, не изменяя структуру, составить любую учебную программу с высоким уровнем индивидуализации. Соглашаясь с такой трактовкой «гибкости», ряд исследователей возражают против рассмотрения модулей как единиц учебного материала, которые соответствуют одной теме .

Гибкость в таком понимании приведет к фрагментарности обучения. Существует элективность обучения (возможность свободного выбора действий). Следуя системе Ф. Келлера, важной чертой модульного обучения является отсутствие жестких организационных временных рамок обучения: оно может проходить в удобное для учащегося время. Отсутствие жестких временных рамок позволяет ученику продвигаться в обучении со скоростью, которая соответствует его способностям и наличия свободного времени: ученик может выбирать не только необходимые ему модули, но и порядок их изучения.

Дж. Рассел утверждает, что модульное обучение требует непосредственной ответственности ученика за результат обучения, так как для него создаются комфортные условия для усвоения содержания модулей. При таком подходе существенно увеличивается мотивация обучения, так как учащийся может свободно выбирать удобные для него способы, средства и темпы обучения. Но при этом не исключается роль преподавателя (инструктора). Активность учащихся в процессе обучения. Для эффективного усвоения учебного материала учащийся должен активно над ним работать.

Главным преимуществом методики в учебных заведениях Западной Европы является деятельность учащихся. Другими словами, - акцент ставится не на преподавании, а на самостоятельной индивидуальной работе учащихся с модулями. Здесь рассматриваются функции педагога. С появлением модульного обучения функции педагога меняются, так как акцент делается на активную учебную деятельность учащихся.

Педагог освобождается от рутинной работы – преподавания несложного учебного материала, активный контроль знаний учащихся сменяется самоконтролем. Больше времени и внимания педагог уделяет стимулированию, мотивации обучения, личными контактами в процессе обучения. При этом он должен быть высоко компетентным, что позволяет ему давать ответы на те сложные вопросы творческого характера, которые могут возникнуть у учащихся в процессе работы с модулем. Взаимодействие учащихся в процессе обучения .

Современное понимание сути процесса обучения, прежде всего, в том, что обучение – процесс субъект – субъективного взаимодействия педагога и учащихся, а также учащихся между собой. Это взаимодействие базируется на общении. Поэтому обучение можно определить, как «общение, в процессе которого и при помощи которого усваивается определенная деятельность ее результат». При общении происходит передача сути обучения. Интенсивный индивидуальный контакт – является одним из факторов эффективности модульного обучения и одновременно способом индивидуализации обучения .

Вывод: Главное отличие модульной системы обучения от традиционной заключается в системном подходе к анализу изучения конкретной профессиональной деятельности, что исключает подготовку по отдельным дисциплинам и предметам. Это очень важный момент в процессе обучения.

В основе построения модульных учебных программ находится конкретное производственное задание, которое составляет суть каждой конкретной работы. В обобщенном виде их комплекс составляет содержание специальности или профессии. Термин «задание» в данном случае изменен на новый – «модульный блок». Модульный блок – логически завершенная часть работы в рамках производственного задания, профессии или области деятельности с четко обозначенным началом и окончанием контроля, как правило, не подразделяется в дальнейшем на более мелкие части.

Модуль трудовых навыков (МТН) – описание работы, выраженное в виде модульных блоков. МТН может состоять из одного или нескольких самостоятельных модульных блоков. Учебный элемент – самостоятельная учебная брошюра, предназначенная для изучения, ориентированная как на самостоятельную работу обучаемого, так и на работу под руководством инструктора. Каждый учебный элемент охватывает определенные практические навыки и теоретические знания. Инструктивный блок – современная форма плана занятий, разработанная для модульной системы обучения.

Он способствует инструкторам и преподавателям осуществлять систематическое планирование и подготовку занятий. Инструкционные блоки могут также являться основой для разработки учебного элемента.

Важно поэтапно представить модульную систему обучения.

Первый этап. На нем определяется содержание обучения по любой профессии и с отдельными ее составляющими. Его можно назвать проектированием содержания модульного обучения. Создание содержания – это последовательная детализация данных конкретного школьного предмета, начиная с его функциональных основ и до конечного результата. После определения этапов обучения по данному предмету разрабатывается «Описание урока» .

Здесь в сжатом виде содержится описание основных учебных функций. Здесь также даются условия и требования к тем, кто будет учится. Дальше все перечисленные функции, который должен выполнять учащийся, распределяются на отдельные модульные блоки: МБ – 1, МБ – 2,… МБ – N. По результатам такого анализа составляется перечисление и описание модульных блоков. В рамках каждого сформированного модульного блока происходит еще более мелкая детализация выполняемых работ путем разделения ее на отдельные операции («шаги»), которые в свою очередь распределяются на совокупность отдельных навыков, овладение которыми дает возможность исполнять эту операцию.

На втором этапе проектирования для усвоения тех или иных навыков разрабатываются учебные элементы (УЭ), которые являются основным дидактическим материалом в модульной системе обучения. Каждый учебный элемент содержит в себе практические умения и навыки или теоретические знания, которые необходимо усвоить.

Третий этап предполагает технологическую подготовку к проведению учебного процесса:

Материальное обеспечение мест для работы учащихся;

Создание контрольной учетной документации;

Изучение инструктором (или мастером) всех умений и навыков, которые приведены в конкретном учебном элементе.

На четвертом этапе совершается непосредственное обучение по модульной технологии. Совокупность взаимосвязанных модулей представляет собой информационный блок.

По отношению к школьному базовому образованию целесообразно формировать более большую, законченную в учебном понимании единицу, которую назовем профессиональным блоком. При создании профессиональных блоков необходимо учитывать иерархический принцип их построения, связанный с требованиями стандартов школьного и профессионального образования .

В зависимости от необходимого уровня профессиональной подготовки выбирают соответствующие модули. По желанию преподавателя или учащегося часть модулей или модульных единиц может выть исключена, если в процессе выполнения профессиональных обязательств не нужно выполнять некоторую часть работы. На предприятиях, где тоже используется модульная система обучения, в связи с ростом арендных, акционерных, кооперативных и других форм собственности предприятий возникает необходимость овладения работниками не одной, а несколькими профессиями. Например, менеджер и экономист, сантехник и сварщик, тракторист и шофер и так далее.

В таком варианте обучения и применяются соответствующие профессиональные блоки. Если модули или модульные единицы повторяются и были изучены раньше, они исключаются из учебной программы и в профессиональных блоках не изучаются. Это укорачивает сроки обучения, позволяет создавать гибкие программы обучения, адаптированные к учащемуся.

Может быть широкопрофильная профессия, связанная с использованием одной и той же производственной деятельности в разных отраслях. Указанные выше принципы модульной системы профессионального образования дают возможность обратить внимание на такие ее позитивные качества:

Достигается мобильность знаний в структуре профессиональной компетентности работника путем замены устаревших модульных единиц на новые, которые содержат новую и перспективную информацию;

Управление обучением учащихся является минимальным. Это позволяет решить проблемы с будущим обучением и повышением квалификации рабочих кадров и специалистов;

Благодаря четким, коротким записям учебной информации при конструировании дидактических модулей, приучает педагогов и учащихся к короткому высказыванию мыслей и суждений;

Время усвоения информации, записанной в дидактическом модуле, по сравнению с традиционными формами предоставления учебного материала в 10 – 14 раз;

Сокращается учебный курс на на 10 – 30% без потерь полноты преподавания и глубины усвоения учебного материала за счет действия фактора «сжимания» и «отклонения» учебной информации, лишней для данного вида работ или деятельности;

Происходит самообучение с регулированием не только скорости работы, но и содержания учебного материала;

Достигается декомпозиция профессии (специальности) на завершенные в целевом и содержательном отношении части (модулей, блоков), которые имеют самостоятельные значения;

Возможность обучения нескольким профессиям на основе усвоения разных профессиональных блоков с учетом конкретной производственной деятельности .

Знание структуры, функций и основных характеристик действия позволяют моделировать наиболее рациональные виды познавательной деятельности и намечать требования к ним в конце обучения. Для того чтобы запрограммированные виды познавательной деятельности стали достоянием обучаемых, их надо провести через ряд качественно своеобразных состояний по всем основным характеристикам. Действие, прежде чем стать умственным, обобщенным, сокращенным и освоенным, проходит через переходные состояния.

Основные из них и составляют этапы усвоения действия, каждый из которых характеризуется совокупностью изменений основных свойств (параметров) действия. Рассматриваемая теория выделяет в процессе усвоения принципиально новых действий пять этапов. В последние годы ученый – разработчик модульных систем обучения П.Я.Гальперин указывает на необходимость введения еще одного этапа, где главная задача состоит в создании необходимой мотивации у обучаемого .

Независимо от того составляет решение данной задачи самостоятельный этап или не составляет, наличие мотивов, необходимых для принятия учащимися учебной задачи и выполнения адекватной ей деятельности, должно быть обеспечено. Если этого нет, то формирование действий и входящих в них знаний невозможно. В практике хорошо известно, что если ученик не хочет учиться, то научить его невозможно. С целью создания положительной мотивации обычно используется создание проблемных ситуаций, разрешение которых возможно с помощью того действия, к формированию которого намечено приступить. Существует следующая характеристика основных этапов процесса усвоения.

На первом этапе учащиеся получают необходимые разъяснения о цели действия, его объекте, системе ориентиров. Это этап предварительного ознакомления с действием и условиями его выполнения – этап составления схемы ориентировочной основы действия.

На втором этапе – этапе формирования действия в материальном (или материализованном) виде учащиеся уже выполняют действие, но пока во внешней, материальной (материализованной) форме с развертыванием всех входящих в него операций. После того как все содержание действия оказывается усвоенным, действие необходимо переводить на следующий, третий этап – этап формирования действия как внешнеречевого. На этом этапе, где все элементы действия представлены в форме внешней речи, действие проходит дальнейшее обобщение, но остается еще неавтоматизированным и несокращенным.

Четвертый этап – этап формирования действия во внешней речи про себя – отличается от предыдущего тем, что действие выполняется беззвучно и без прописывания – как проговаривание про себя. С этого момента действие переходит на заключительный, пятый этап – этап формирования действия во внутренней речи. На этом этапе действие очень быстро приобретает автоматическое течение, становится недоступным самонаблюдению.

Теория поэтапного формирования умственных действий П.Я.Гальперина безусловно послужила основой для модульной технологии обучения. В теории ясно показана важность разбиения всей деятельности на отдельные взаимосвязанные действия. Так, в модульной системе обучения разбитая учебная информация на отдельные взаимосвязанные блоки усваивается учащимися намного легче и быстрей .

Кроме того, разбиение всего учебного материала на модули предусматривает исключение ненужной информации, которая изучается при предметной системе образования. Поэтапное формирование умственных действий очень важно в процессе образования. Как известно, в один модуль может включаться всего несколько тесно взаимосвязанных дисциплин. В процессе изучения учебного материала учащийся не перенапрягает свои умственные способности и память благодаря логической связи между предметами и немногочисленностью их. Поэтому, учащийся может постепенно получать необходимые знания согласно теории поэтапного формирования умственных действий П.Я. Гальперина.

Одним из наиболее важных преимуществ модульного обучения является тесная взаимосвязь теоретических знаний и практических навыков и умений, так как каждый раз после получения определенного объема теоретической информации учащийся сразу же закрепляет ее практически.

Причем будет выполнять необходимое действие до тех пор, пока оно не будет хорошо получаться. При этом появляется очень важная в процессе обучения связь теории с практикой. Это соответствует одному из трех законов бихевиоризма, а именно закону упражняемости. При проверке знаний учащийся проходит модульные тесты. Если результаты неудовлетворительны, учащийся может повторно изучать необходимый материал до тех пор, пока не будут достигнуты хорошие результаты обучения.

Каждый человек обладает разными умственными способностями. В предметной системе обучения очень высокий уровень неуспеваемости обусловлен именно этим. Допустим, преподаватель заинтересовал учащегося определенной темой, человек уже полностью готов к получению новой информации, которая хорошо усвоится. Но существуют еще и другие учащиеся, которым пока эта тема неинтересна.

В то время, пока преподаватель будет пытаться заинтересовать (приводить в состояние готовности получить новую дозу информации) остальных, первый учащийся утомится ждать и потеряет интерес к данной теме. То же самое можно сказать и о жестких временных рамках обучения.

Известно множество случаев, когда дети в начальных классах просто теряют интерес к учебе, хотя вначале учебного процесса стремились к знаниям. Причина всегда одна – для одних процесс изучения определенного материала слишком длителен и его постоянное повторение утомляет, для других же слишком мало времени из-за чего дети начинают отставать, им становится тяжело догнать остальных и, наконец, им просто надоедает эта вечная гонка, поэтому они теряют какой-либо интерес к учебе. Так же дело обстоит и с более взрослыми людьми.

Модульная технология обучения очень важна в современном мире, так как она ориентирована на психологические особенности каждой личности.

Внедрение данной технологии в условиях инновационного развития общества способствует демократизации учебного процесса, организации рационального и эффективного усвоения определенных знаний, стимулированию субъектов обучения к систематическому учебному труду, усилению мотивационного компонента, формированию самооценивающих действий и превращения контроля на действенный механизм управленческого процесса .

Кредитно-модульная система организации учебного процесса (КМСОУП) в соответствии с рекомендациями Европейского пространства высшего образования:

Способствует повышению качества и обеспечивает действительное приближение содержания подготовки специалистов до европейского уровня;

В полной мере отвечает базовым положением ECTS;

Учитывает все существующие требования отечественной системы образования;

Легко приспосабливается к существующим отработанным методам планирования учебного процесса.

Интенсификация обучения в условиях кредитно-модульной технологии способствует достижению цели обучения будущего учителя общеобразовательной школы с минимальной затратой сил субъектов обучения, используя в педагогической деятельности традиционные и нетрадиционные методы обучения.

Метод обучения - сложное, многокачественное образование, в котором находят отображение объективные закономерности, цели, содержание, принципы и формы обучения. Методы обучения – это средства взаимосвязанной деятельности преподавателя и студентов, которые направлены на овладение студентом знаниями, умениями и навыками, на его воспитание и развитие в процессе обучения. Разнообразность методов порождает у будущих учителей общеобразовательной школы заинтересованность к учебно-познавательной деятельности, что очень важно для формирования их профессиональной компетентности.

Обоснованность теории и практики метода обучения характеризируется наличием в нем:

Запланированных педагогом целей учебной деятельности;

Путей, которые избирает педагог для достижения данных целей;

Способов сотрудничества со студентами;

Источников информации;

Активности участников учебного процесса; мастерством преподавателя;

Системой приемов и средств обучения.

Использование того или иного метода должно определяться:

Педагогической и психологической целесообразностью;

Соотношением на организацию деятельности преподавателя и студентов;

Соответствием методов возможностям студентов, индивидуальным возможностям преподавателя;

Соотношением методов с характером содержания материала, который изучается;

Взаимосвязью и взаимодействием методов между собой;

Эффективностью достижения качественных результатов обучения и творческого использования знаний, умений и навыков .

К инновационным методам обучения относятся методы активного обучения, которые в условиях КМСОУП предвидят повышение уровня профессиональной компетентности будущего учителя общеобразовательной школы. Методы активного обучения способствуют:

Формированию знаний, профессиональных умений и навыков будущих специалистов, путем привлечения их к интенсивной познавательной деятельности;

Активизации мышления участников учебно-воспитательного процесса; проявлению активной позиции учащихся;

Самостоятельному принятию решений в условиях повышенной мотивации; взаимосвязи преподавателя и студента и другое.

Исходя из этого, в процессе подготовки учителя начальных классов в условиях кредитно-модульной технологии обучения необходимо использовать следующие методы и приемы:

Проведение интерактивных лекций, а именно использование метода «вопрос-ответ» во время работы со студентами на протяжении лекции; проведение коротких презентаций, подготовленных студентами, которые раскрывали бы один из вопросов, поставленных в данной теме; тестирование;

Внедрение в ходе практических занятий таких форм работы как «круглый стол», «мастерская», где студенты в ходе обсуждения решают важные проблемы специальности на основе собственных самостоятельных наработок; проведение диспутов, дискуссий, анализу педагогических ситуаций;

Преобразование самостоятельной работы студента, исполнение индивидуального научно-исследовательского задания, как обязательной составляющей изучения конкретной учебной дисциплины;

Использование на занятиях презентаций, публикаций, web-сайтов, подготовленных студентами в соответствии с НИТ;

Использование в учебно-воспитательном процессе высшей школы ролевых и деловых игр, кейс-методов, «мозговой атаки», которые способствуют развитию активности, творчества, креативности педагога;

Проведение мастер-классов, тренинговых занятий, способствующих формированию профессиональной компетентности будущего учителя начальных классов;

Широкое использование мультимедийных средств в процессе чтения лекций и проведения практических занятий, электронных и разных видов опорных конспектов лекций, предоставления студентам учебной информации на электронных носителях, Интернет-поиск и тому подобное;

Использование элементов имитации, рефлексии, релаксации в ходе отдельных практических занятий;

Использование новых подходов к контролю и оцениванию достижений студентов, которые обеспечивают объективность и надежность.

Используя возможности инновационных методов обучения, в условиях кредитно-модульной технологий, в процессе профессиональной подготовки будущего учителя начальных классов происходит:

Активизация познавательной деятельности студентов;

Мотивирование и стимулирование будущих специалистов педагогической сферы к учебной деятельности;

Моделирование профессиональных умений будущего специалиста;

Удовлетворение профессиональных образовательных интересов и потребностей;

Развитие творчества, критического мышления;

Умение проявить свои личностные и профессионально важные качества;

Обеспечение возможности к обучению на протяжении жизни;

Формирование профессиональной мобильности, креативности, компетентности и конкурентоспособности будущих учителей общеобразовательной школы на рынке труда .

Использование педагогических технологий, инновационных методов обучения в образовательном процессе высшей школы предоставит возможность значительно повысить качество профессиональной подготовки будущего учителя, обеспечит его конкурентоспособность на мировом рынке труда, активное участие в европейском пространстве высшего образования.

Вывод: Рассмотрев теорию поэтапного формирования умственных действий П.Я.Гальперина можно выделить основные системы, которые лежат в основе модульной системы обучения. Прежде всего, необходимо выделить важность теории П.Я. Гальперина. Именно эта теория послужила толчком для создания модуля.

К настоящему времени сложилось значительное количество разнообразных образовательных технологий. В основе всех технологий лежит идея создания адаптивных условий для каждого ученика, то есть адаптация к особенностям ученика содержания, методов, форм образования и максимальная ориентация на самостоятельную деятельность или работу школьника в малой группе. Сегодня педагогически грамотный специалист, в том числе и учитель информатики, должен владеть всем обширным арсеналом образовательных технологий.

Для достижения выше сказанного нами - учителями информатики применяются на уроках различные методы и формы обучения, современные технологии: это и обучение в сотрудничестве, и проблемное обучение, игровые технологии, технологии уровневой дифференциации, групповые технологии, технологии развивающего обучения, технология модульного обучения, технология проектного обучения, технология развития критического мышления учащихся и другие.

Изучая целесообразность применения метода сотрудничества в практике отечественной школы, мы пришли к выводу, что совокупность технологий сотрудничества в различных вариантах отражает задачи личностно-ориентированного подхода на этапе усвоения знаний, формирования интеллектуальных умений, необходимых и достаточных для дальнейшей самостоятельной исследовательской и творческой работы в проектах.

В своей работе можно использовать следующие варианты применения обучения в сотрудничестве:

1) Проверка правильности выполнения домашнего задания (в группах учащиеся могут прояснить непонятые в ходе выполнения домашнего задания детали);

2) Одно задание на группу, с последующим рассмотрением заданий каждой группой (группы получают различные задания, что позволяет к концу урока разобрать большее их число);

3) Совместное выполнение практической работы (в парах);

4) Подготовка к тестированию, самостоятельной работе (затем учитель предлагает выполнить задания или тест индивидуально каждому ученику);;

5) Выполнение проектного задания.

Технологии проектного обучения и обучение в сотрудничестве, которые находятся в тесной взаимосвязи между собой, займут прочное место и на уроках информатики и во внеурочной деятельности .

Конечно, переводить полностью весь образовательный процесс на проектное обучение не стоит. Для современного этапа развития системы образования важно обогатить практику многообразием личностно-ориентированных технологий. Для реализации целей дифференциации обучения можно предложить использовать следующие виды разноуровневых заданий на уроке: индивидуализировать обучение по содержанию, по темпу обучения, по темпу усвоения, по уровню самостоятельности, по методам и способам учения, по способам контроля и самоконтроля нам позволяет модульная технология.

Сердцевина модульного обучения – учебный модуль, включающий:

Законченный блок информации;

Целевую программу действий ученика;

Практика показывает, что большинство учителей ориентируется на полученные методические рекомендации (это, безусловно, полезно), но никакая наука не даст конкретному учителю рецепт конструирования образовательного процесса в том ученическом классе, где он работает. Выбор же способов, технологий, средств организации образовательного процесса у преподавателя очень широк. Какие их них дадут оптимальный результат? Какие «подходят» учителю и тем условиям, в которых он работает? На эти вопросы надо отвечать самому учителю.

Формирование культуры выбора, обеспечение успешности каждого обучающегося при этом во многом зависит от правильного планирования учителем основных этапов урока, построенного по технологии ИОСО (индивидуально- ориентированного способа обучения), таких как, например, организация мотивации к учению.

При этом ученик должен озадачиваться вопросом: как этому научиться, я хочу это знать, я могу этого достичь, мне это пригодится для… Так как урок носит индивидуально-ориентированный характер, то и мотивировать каждого ученика надо индивидуально, ведь у каждого из них свой мотив достижения. Очень эффективен прием мотивации через парадокс, который используется, например, на уроке изучения темы «Формы мышления» в 10 классе.

Он начинается с создания проблемной ситуации, разрешая которую ученики приходят к выводу о необходимости изучения этой темы, что вызывает интерес к проблеме логики и формам мышления. Работа ведется с помощью карточек с софизмом, содержащим парадоксальную ситуацию и заданиями разного уровня сложности, предложенным в конце:

Появление новых сфер науки и технологий требует приближения к проблемно ориентированным методов формирования знаний, пересмотра заданий общеобразовательных школ, реорганизации научных исследований и подготовки специалистов, ориентированных на разрешение нестандартных проблем междисциплинарного характера.

Главной задачей личностно-ориентированной технологии становится задача выявления и всестороннего развития индивидуальных способностей учащихся. В настоящее время в образовании все чаще обращаются к индивидуальному обучению, притом эта педагогическая технология может быть эффективно реализована, в том числе, и при дистанционном обучении.

Формирование культуры выбора, обеспечение успешности каждого обучающегося при этом во многом зависит от правильного планирования учителем основных этапов урока, построенного по технологии ИОСО (индивидуально- ориентированного способа обучения), таких как, например, организация мотивации к учению. Так как урок носит индивидуально-ориентированный характер, то и мотивировать каждого ученика надо индивидуально, ведь у каждого из них свой мотив достижения.

Проблемы развития информационного общества для ускорения интеграционных процессов в последние годы находятся в центре внимания и общественной мысли. По проблемам информатизации, обеспечения принципа «образование для всех, образование на протяжении всей жизни, образование без границ» проводятся международные конференции, совещания, семинары.

Необходимость внедрения инновационных методов обучения в условиях кредитно-модульной технологии в процессе профессиональной подготовки будущего учителя начальных классов, вызванная потребностью времени, побуждает к последующим научным разработкам проблемы формирования профессиональной компетентности будущего учителя в условиях кредитно-модульной технологии высшего учебного заведения.

Технологии, используемые в организации предпрофильной подготовки по информатике, являются деятельностно - ориентированными. Это способствует процессу самоопределения учащихся и помогает им адекватно оценить себя, не занизив уровень самооценки. На первом занятии проводиться небольшая беседа с учащимися по поводу того, что они ожидают от обучения на курсе, что хотели бы узнать, чему научиться, какие профессии им интересны и так далее.

Внедрение модульной системы организации учебного процесса крайне важно для лучшего использования достижений научно-технического прогресса в обучении учащихся.


1. Андреев В.И. Педагогика. Учебный курс для творческого саморазвития. 3-е издание. М., 2009. – 620 с.

2. Галатенко В.А. Стандарты информационных систем. М. 2006. – 264 с.

3. Джидарьян И.А. Коллектив и личность. М., Флинта. 2006. – 158 с.

4. Ефремов О.Ю. Педагогика. Питер. 2009. – 352 с.

5. Запечников С.В., Милославская Н.Г., Ушаков Д.В. Информационная безопасность открытых систем. М., 2006. - 536 с.

6. Левитес Д.Г. Практика обучения: современные образовательные технологии. Мурманск. 2007. – 210 с.

7. Лепехин А.Н. Теоретико-прикладные аспекты информационных систем. М., Тесей. 2008. – 176 с.

8. Лопатин В.Н. Информационные системы России. М., 2009. – 428 с.

9. Мижериков В.А. Управление общеобразовательным учреждением. Словарь – справочник. М., Академия, 2010. – 384 с.

10. Новоторцева Н.В. Коррекционная педагогика и специальная психология. М., Каро, 2006. – 144 с.

11. Новые педагогические и информационные технологии в системе образования: Учеб. Пособие для студ. пед. вузов и системы повыш. квалиф. пед. кадров/ Е.С.Полат, М.Ю.Бухаркина, М.В.Моисеева, А.Е.Петров; под ред. Е.С.Полат. М.: Издательский центр «Академия», 2006. – 272 с.

12. Педагогические системы и практикум. // Под ред. Циркуна И.И., Дубовик М.В. М., Тетра-Системс, 2010. – 224 с.

13. Петренко С.А., Курбатов В.А. Политики информационной безопасности. М., Инфра-М. 2006. – 400 с.

14. Петренко С.А. Управление информационными технологиями. М., Инфра-М. 2007. – 384 с.

15. Самыгин С.И. Педагогика. М., Феникс, 2010. – 160 с.

16. Селевко Г.К. Современные образовательные технологии: Учебное пособие. М.: Народное образование. 2008.- 256 с.

17. Сережкина А.Е. Основы математической обработки данных в психологии. Казань, 2007. – 156 с.

18. Соловцова И.А., Байбаков А.М., Боротко Н.М. Педагогика. М., Академия. 2009. – 496 с.

19. Столяренко А.М. Психология и педагогика. М.: ЮНИТИ, 2006. - 526 с.;

20. Шаньгин В.Ф. Управление информационными технологиями. Эффективные методы и средства. М., ДМК Пресс. 2008. – 544 с.

21. Шиянов И.Н., Сластенин В.А., Исаев И.Ф. Педагогика. М., Академия. 2008. – 576 с.

22. Щербаков А.Ю. Информатика. Теоретические основы. Практические аспекты. М., Книжный мир. 2009. – 352 с.

23. Щербинина Ю.В. Педагогический дискурс. Мыслить-говорить-действовать. М., Флинта-Наука. 2010. – 440 с.


Лопатин В.Н. Информационные системы России. М., 2009. – стр. 34.

Новые педагогические и информационные технологии в системе образования: Учеб. Пособие для студ. пед. вузов и системы повыш. квалиф. пед. кадров/ Е.С.Полат, М.Ю.Бухаркина, М.В.Моисеева, А.Е.Петров; под ред. Е.С.Полат. М.: Издательский центр «Академия», 2006. – 83стр.

Сережкина А.Е. Основы математической обработки данных в психологии. Казань, 2007. – 29 стр.

Ефремов О.Ю. Педагогика. Питер. 2009. – 122 стр.

Соловцова И.А., Байбаков А.М., Боротко Н.М. Педагогика. М., Академия. 2009. – 225 стр.

Шиянов И.Н., Сластенин В.А., Исаев И.Ф. Педагогика. М., Академия. 2008. – 39 стр.

Селевко Г.К. Современные образовательные технологии: Учебное пособие. М.: Народное образование. 2008.- 63 стр.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный педагогический университет имени Абая

Институт математики, физики и информатики

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

«»

Для обучающегося по специальности

5В011100 - «Информатика »

Алматы, 2013

Учебно-методический комплекс дисциплины для обучающегося составлен на основании:

· Государственного общеобязательного стандарта высшего профессионального образования по специальности 05В011100 - Информатика;

· Рабочего учебного плана по специальности 05В011100 - Информатика.

Составитель

к.п.н., доцент Абдулкаримова Г.А

Учебно-методический комплекс дисциплины «Методика преподавания информатики » для обучающегося по специальности 5В011100- «Информатика». – Алматы: КазНПУ им.Абая, 2013 . – 104 с.

С О Д Е Р Ж А Н И Е

Стр.
1. Силлабус...........................................................................................
2. Тезисы лекций........................................................................................
3. Самостоятельная работа студентов под руководством преподавателя (СРСП) .....................................................................
4. Самостоятельная работа студентов..................................................
5. Лабораторные работы.............................................................................
6. Задания для самопроверки и подготовки к экзамену, тесты…………
7. Литература...............................................................................................
8. Глоссарий...........................................................................................

СИЛЛАБУС ДИСЦИПЛИНЫ ДЛЯ СТУДЕНТОВ

Информация о дисциплине

Краткое описание дисциплины

«Методика преподавания информатики» обеспечивает методическую подготовку студентов и реализует следующие цели: подготовка методически грамотного учителя информатики, способного: проводить уроки на высоком научно-методическом уровне; организовать внеклассную работу по информатике в школе; оказать помощь учителям предметникам, желающим использовать ИКТ в обучении.

Основные задачи курса «Методика преподавания информатики »: подготовить будущего учителя информатики к методически грамотной организации и проведению занятий по информатике; формировать приемы проведения занятий по информатике, развить творческий потенциал, необходимый для преподавания информатики в условиях дифференциации школ.

В результате изучения студент должен продемонстрировать: понимание роли и значения школьного курса информатики в формировании всесторонне развитой личности школьника; знание цели изучения школьной информатики во всех трех аспектах – образования, развития, воспитания; знание основных концепций обучения информатике; знание содержательных и методических аспектов преподавания школьной информатики на разных уровнях обучения; знание содержания работы учителя по организации, планированию и обеспечению уроков информатики; знание традиционных и инновационных методов обучения, управление умственной деятельностью учащихся; различных организационных форм занятий; использование программной поддержки курса и ее методическую целесообразность; организацию занятия по информатике для развития интереса к предмету у учащихся различных возрастных групп.

Компетенции , формируемые в результате освоения дисциплины:

Готовность использовать нормативные правовые документы в своей профессиональной деятельности;

Способность использовать навыки публичной речи, ведения дискуссии;

Осознание социальной значимости своей будущей профессии, обладание мотивацией к осуществлению профессиональной деятельности;

Владение основами речевой профессиональной культуры;

Способность разрабатывать и реализовывать учебные программы базовых и элективных курсов в различных общеобразовательных учреждениях;

Способность использовать возможности образовательной среды для формирования универсальных видов учебной деятельности и обеспечения качества учебно-воспитательного процесса;

Способность организовать сотрудничество обучающихся, поддерживать активность и инициативность, самостоятельность обучающихся и их творческие способности;

Способность разрабатывать инновационные педагогические технологии с учетом особенностей образовательного процесса, задач воспитания и развития личности:

Способность использовать основные методы научного исследования в учебно-воспитательной деятельности.

3. Пререквизиты дисциплины: общеобразовательный курс информатики, «Педагогика».

4. Постреквизиты дисциплины: Элективные курсы методического цикла.

Календарно-тематический план.

Наименование тем дисциплины недели Аудиторные занятия Вид задания Всего (ч.)
Лекц. (ч.) Лаб. (ч.) СРСП(ч.) СРС (ч.)
Структура и содержание обучения основам информатики
Базовый курс школьной информатики:
Дифференцированное обучение информатике на старшей ступени школы
Программное обеспечение по курсу информатики
Компьютерные телекоммуникации в системе общего среднего образования
Информатика в высшей школе
Оборудование школьного кабинета информатики
Планирование учебного процесса по информатике
Формы дополнительного изучения информатики и ее приложений в школе
Организация проверки и оценки результатов обучения.
Методика изучения информационных процессов:
Методика изучения основ алгоритмизации и программирования
Методика изучения устройства компьютера
Методика изучения информационных технологий:
Методика изучения формализации и моделирования
Итого

Литература для изучения

1. Лапчик М.П., Рагулина М.И., Самылкина Н.Н., Семакин И.Г., Хеннер Е.К. Теория и методика обучения информатике. - Москва «Академия», 2008. – 592 с.

2. Лапчик М.П., Рагулина М.И., Смолина Л.В. Теория и методика обучения информатике. Лаборторный практикум. Уч. пособие для студентов вузов / Под. ред. М.П. Лапчика. –Омск: Изд-во ОмГПУ, 2004. -312 с.

3. Педагогическая практика в системе подготовки учителя информатики и математики: Методические рекомендации / Под общей ред. М.П. Лапчика. – Омск: Изд-во ОмГПУ, 2004. -188 с.

4. Софонова Н.В.Теория и методика обучения информатике. Учебное пособие. М., 2004 г.

Дополнительная:

1.Полат Е.С. и др. Новые педагогические и информационные технологии в системе образования: Учебное пособие для студентов педвузов и системы повышения квалификации педкадров. Москва: «Академия», 1999. -224 стр.

2. Бидайбеков Е.Ы., Абдулкаримова Г.А. Информатика и средства информатики в спецкурсах и спецсеминарах. Учебно-методическое пособие. г. Алматы, АГУ им.Абая, 2002 г. 80 с.

Нормативная литература

1. Государственный общеобязательный стандарт среднего образования (начального, основного среднего, общего среднего образования). ГОСО РК 2.3.4.01 – 2010.

  1. Методические рекомендации по организации профильного обучения в школах РК. Алматы, 2009 г.

Интернет - источники:

http://www.bogomolovaev.narod.ru

Критерии оценки

Требования преподавателя.

В процессе изучения дисциплины студент должен выполнять следующие требования: занятия, внесенные в расписание, должны посещаться в обязательном порядке, контроль проводится преподавателем на каждом занятии; сдача всех видов контроля производится студентом в установленные графиком дисциплины сроки, в случае отсутствия студента на занятии по уважительной причине (подтвержденной документально) возможна сдача пропущенного вида контроля в более поздние сроки. Максимально возможный балл в этом случае умножается на 0, 8.


ТЕЗИСЫ ЛЕКЦИЙ

Лекция 1.

Тема: Методика преподавания информатики в системе педагогических знаний

План:

Предмет методики преподавания информатики и место в системе профессиональной подготовки учителя информатики. Информатика как наука и учебный предмет в школе. Связь методики преподавания информатики с педагогикой, психологией и информатикой. Методическая система обучения информатике в средней общеобразовательной школе. Общая характеристика ее основных компонентов (цели, содержание обучения, методы, формы и средства обучения).

Введение в 1985 г. в среднюю школу отдельного общеобразовательного предмета «Основы информатики и вычислительной техники» дало старт формированию новой области педагогической науки, объектом которой является обучение информатике. Следуя официальной классификации научных специальностей, этот раздел педагогики, исследующий закономерности обучения информатике на современном этапе ее развития в соответствии с целями, поставленными обществом, в настоящее время получил название «Теория и методика обучения и воспитания (информатике; по уровням образования)». Даже при очевидной неудобочитаемости приведенной трактовки научного направления видно, что строка классификатора демонстрирует явное стремление к максимальной цельности и полноте этого раздела педагогической науки. Из приведенной формулировки следует, что к теории и методике обучения информатике нужно относить исследование процесса обучения информатике везде, где бы он ни проходил и на всех уровнях: дошкольный период, школьный период, все типы средних учебных заведений, высшая школа, самостоятельное изучение информатики, дистанционные формы обучения и т.п. Каждая из перечисленных областей в настоящее время ставит свои специфические проблемы перед современной педагогической наукой. Нас в данном случае в первую очередь будет интересовать та область методики информатики, которая рассматривает обучение информатике в средней школе в рамках общеобразовательного предмета информатики.

Понятно, что определение методики информатики как науки об обучении информатике само по себе еще не означает существования этой научной области в готовом виде. Теория и методика обучения информатике в настоящее время интенсивно развивается; школьному предмету информатики уже более полутора десятка лет, но многие задачи в новой педагогической науке возникли совсем недавно и не успели получить еще ни глубокого теоретического обоснования, ни длительной опытной проверки.

В соответствии с общими целями обучения методика преподавания информатики ставит перед собой следующие основные задачи: определить конкретные цели изучения информатики, а также содержание соответствующего общеобразовательного предмета и его место в учебном плане средней школы; разработать и предложить школе и учителю-практику наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей; рассмотреть всю совокупность средств обучения информатике (учебные пособия, программные средства, технические средства и т.п.) и разработать рекомендации по их применению в практике работы учителя.

Говоря иными словами, перед методикой преподавания информатики, как и перед всякой предметной школьной методикой, ставится традиционная триада основных вопросов:

зачем учить информатике?

что надо изучать?

как надо обучать информатике?

Методика преподавания информатики - молодая наука, но она формируется не на пустом месте. Опережающие фундаментальные дидактические исследования целей и содержания общего кибернетического образования, накопленный отечественной школой еще до введения предмета информатики практический опыт преподавания учащимся элементов кибернетики, алгоритмизации и программирования, элементов логики, вычислительной и дискретной математики, проработка важных вопросов общеобразовательного подхода к обучению информатике имеют в общей сложности почти полувековую историю. Будучи фундаментальным разделом педагогической науки, методика информатики опирается в своем развитии на философию, педагогику, психологию, информатику (в том числе школьную информатику), а также обобщенный практический опыт средней школы.

Из всей совокупности методико-педагогических знаний и опыта, объединяемых методикой информатики, выделяется учебный предмет «Теория и методика обучения информатике», который согласно Государственному образовательному стандарту высшего профессионального образования входит в образовательно-профессиональную программу подготовки учителя по специальности «Информатика». Впервые учебный курс «Методика преподавания информатики» был введен в учебные планы педвузов в 1985 г. в связи с организацией подготовки учителей по дополнительной специальности «Информатика» на базе физико-математических факультетов. С 1995 г. действует Государственный стандарт высшего педагогического образования по специальности «Информатика». В педвузах стала расширяться подготовка «профильных» учителей информатики. В то же время справедливо отмечалось, что в течение весьма длительного периода содержание методической подготовки будущего учителя информатики - наиболее слабая часть (и наиболее слабо обеспеченная часть) его профессиональной подготовки.

Вопросы и задания

1. Приведите определение информатики. Когда она возникла и на какой основе?

2. Что общего между кибернетикой и информатикой?

3. Приведите и опишите структуру информатики как науки.

4. Что является предметом и объектом информатики?

5. Дайте определение термина «Школьная информатика».

Лекция 2.

Тема: Система целей и задач обучения информатике в школе

План:

Цели и задачи обучения основам информатики в школе, педагогические функции курса информатики (формирование научного мировоззрения, развитие мышления и способностей учащихся, подготовка школьников к жизни и труду в информационном обществе, к продолжению образования).

Компьютерная грамотность, как исходная цель введения курса информатики в школу и информационная культура, как перспективная цель обучения информатике в школе.

Цели образования вообще, как и общего школьного образования, в частности, являются прерогативой государства, которое на основе действующей законодательной базы формирует общие принципы своей педагогической политики. На этой основе формулируются и главные задачи общеобразовательной школы:

Обеспечение усвоения учащимися системы знаний, определяемой общественными и производственными потребностями;

Формирование научного миропонимания, политической, экономической, правовой культуры, гуманистических ценностей и идеалов, творческого мышления, самостоятельности в пополнении знаний;

Удовлетворение национально-культурных потребностей населения, воспитание физически и морально здорового поколения;

Выработка у молодежи осознанной гражданской позиции, человеческого достоинства, стремления к участию в демократическом самоуправлении, ответственности за свои поступки.

Описанные выше проектируемые результаты образовательно-воспитательной деятельности школы могут быть сгруппированы в три основные общие цели, которые ставятся перед системой общего школьного образования: образовательные и развивающие цели; практические цели; воспитательные цели.

Общие цели обучения информатике определяются с учетом особенностей информатики как науки, ее роли и места в системе наук, в жизни современного общества. Рассмотрим, как основные цели, характерные для школы в целом, могут быть отнесены к образованию школьников в области информатики.

Образовательная и развивающая цель обучения информатике в школе - дать каждому школьнику начальные фундаментальные знания основ науки информатики, включая представления о процессах преобразования, передачи и использования информации, и на этой основе раскрыть учащимся значение информационных процессов в формировании современной научной картины мира, а также роль информационной технологии и вычислительной техники в развитии современного общества. Изучение школьного курса информатики призвано также вооружить учащихся теми базовыми умениями и навыками, которые необходимы для прочного и сознательного усвоения этих знаний, а также основ других наук, изучаемых в школе. Усвоение знаний из области информатики, как и приобретение соответствующих умений и навыков призвано существенно влиять на формирование таких черт личности, как общее умственное развитие учащихся, развитие их мышления и творческих способностей.

Практическая цель школьного курса информатики - внести вклад в трудовую и технологическую подготовку учащихся, т.е. вооружить их теми знаниями, умениями и навыками, которые могли бы обеспечить подготовку к трудовой деятельности после окончания школы. Это означает, что школьный курс информатики должен не только знакомить с основными понятиями информатики, которые, безусловно, развивают ум и обогащают внутренний мир ребенка, но и быть практически ориентированным - обучать школьника работе на компьютере и использованию средств новых информационных технологий.

В целях профориентации курс информатики должен давать учащимся сведения о профессиях, непосредственно связанных с ЭВМ и информатикой, а также различными приложениями изучаемых в школе наук, опирающимися на использование ЭВМ. Наряду с производственной стороной дела практические цели обучения информатике предусматривают также и «бытовой» аспект - готовить молодых людей к грамотному использованию компьютерной техники и других средств информационных и коммуникационных технологий в быту, в повседневной жизни.

Воспитательная цель школьного курса информатики обеспечивается, прежде всего, тем мощным мировоззренческим воздействием на ученика, которое оказывает осознание возможностей и роли вычислительной техники и средств информационных технологий в развитии общества и цивилизации в целом. Вклад школьного курса информатики в научное мировоззрение школьников определяется формированием представления об информации как одном из трех основополагающих понятий науки: веществе, энергии и информации, лежащих в основе строения современной научной картины мира. Кроме того, при изучении информатики на качественно новом уровне формируется культура умственного труда и такие важные общечеловеческие характеристики, как умение планировать свою работу, рационально ее выполнять, критически соотносить начальный план работы с реальным процессом ее выполнения.

Изучение информатики, в частности, построение алгоритмов и программ, их реализация на ЭВМ, требующие от учащихся умственных и волевых усилий, концентрации внимания, логичности и развитого воображения, должны способствовать развитию таких ценных качеств личности, как настойчивость и целеустремленность, творческая активность и самостоятельность, ответственность и трудолюбие, дисциплина и критичность мышления, способность аргументировать свои взгляды и убеждения. Школьный предмет информатики, как никакой другой, предъявляет особый стандарт требований к четкости и лаконичности мышления и действий, потому что точность мышления, изложения и написания - это важнейший компонент работы с компьютером.

Хорошо известно, как трудно иногда подвести ученика к догадке, как решить задачу. В курсе же информатики дело не только в догадке, ее нужно четко и педантично реализовать в алгоритме для ЭВМ, абсолютно точно записать этот алгоритм на бумаге и/или безошибочно ввести его с клавиатуры. При изучении нового курса у школьников должно постепенно складываться негативное отношение ко всякой нечеткости, неконкретности, расплывчатости и т.п. Было бы наивно полагать, что эти важные черты личности при изучении предмета информатики формируются сами по себе. Здесь требуется кропотливая работа учителя, причем необходимо сразу учесть эти особенности информатики и не попустительствовать небрежности учащихся, даже если в каком-то конкретном случае это и не несет немедленных неприятностей.

Ни одна из перечисленных выше основных целей обучения информатике не может быть достигнута изолированно друг от друга, они прочно взаимосвязаны. Нельзя получить воспитательный эффект предмета информатики, не обеспечив получения школьниками основ общего образования в этой области, так же как нельзя добиться последнего, игнорируя практические, прикладные стороны содержания обучения.

Общие цели школьного образования в области информатики, как триада основных целей, остающихся по своей общедидактической сути весьма расплывчатыми (хотя и вполне устойчивыми), при наложении на реальную учебную сферу трансформируются в конкретные цели обучения. И вот тут оказывается, что формулирование конкретных целей обучения предмету информатики очень непростая дидактическая задача.

И все же, из чего складываются и что влияет на формирование целей школьного образования в области информатики?

В образовательном стандарте по «Информатике и ИКТ» сформулированы цели изучения предмета, которые разнесены для начальной, основной и для старшей школы. В основной школе изучение информатики и ИКТ направлено на достижение следующих целей:

Освоение знаний, составляющих основу научных представлений об информации, информационных процессах, системах, технологиях и моделях;

Овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационых технологий (ИКТ);

Развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;

Воспитание ответственного отношения к информации с учетом правовых и этических аспектов её распространения; избирательного отношения к полученной информации;

Выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.

В старшей школе на базовом уровне ставятся такие цели:

Освоение системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;

Овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов, используя при этом информационные и коммуникационные технологии, в том числе при изучении других школьных дисциплин;

Развитие познавательных интересов, интеллектуальных и творческих способностей путем освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;

Воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;

Приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной деятельности.

В старшей школе на профильном уровне ставятся такие цели:

Освоение и систематизация знаний, относящихся: к математическим объектам информатики; к построению описаний объектов и процессов, позволяющих осуществлять их компьютерное моделирование; к средствам моделирования; к информационным процессам в биологических, технологических и социальных системах;

Овладение умениями строить математические объекты информатики, в том числе логические формулы и

Программы на формальном языке, удовлетворяющие заданному описанию; создавать программы на языке программирования по их описанию; использовать общепользовательские инструменты и настраивать их для нужд пользователя;

Развитие алгоритмического мышления, способностей к формализации, элементов системного мышления;

Воспитание чувства ответственности за результаты своего труда; формирование установки на позитивную социальную деятельность в информационном обществе, на недопустимость действий, нарушающих правовые, этические нормы работы с информацией;

Приобретение опыта проектной деятельности, создания, редактирования, оформления, сохранения, передачи информационных объектов различного типа с помощью современных программных средств; построения компьютерных моделей, коллективной реализации информационных проектов, информационной деятельности в различных сферах, востребованных на рынке труда.

Перечисленные цели школьного курса информатики и ИКТ можно сгруппировать в три основные общие цели: образовательная, практическая и воспитательная. Эти общие цели обучения определяются с учетом места информатики в системе наук и жизни современного общества.

Образовательная цель обучения информатике – дать каждому школьнику начальные фундаментальные знания основ науки информатики, включая представления о процессах преобразования, передачи и использования информации, и на этой основе раскрыть значение информационных процессов в формировании научной картины мира, роль информационных технологий и компьютеров в развитии современного общества. Необходимо вооружить учащихся базовыми умениями и навыками для прочного усвоения этих знаний и основ других наук. Реализация образовательной цели в соответствии с законами дидактики способствует общему умственному развитию учащихся, развитию их мышления и творческих способностей. Практическая цель – предполагает вклад в трудовую и технологическую подготовку учащихся, вооружение их знаниями, умениями и навыками, необходимыми для последующей трудовой деятельности. Учащихся следует не только знакомить с теоретическими основами информатики, но и обучать работе на компьютере и использованию средств современных информационных технологий; знакомить с профессиями, непосредственно связанными с ЭВМ. Воспитательная цель реализуется мировоззренческим воздействием на ученика путем осознания им значения вычислительной техники и информационных технологий для развития цивилизации и общества. Важным является формирование представления об информации как одного из трех фундаментальных понятий науки: материи, энергии и информации. Использование в обучении современных информационных технологий формирует культуру умственного труда. Изучение информатики требует от учащихся определенных умственных и волевых усилий, концентрации внимания, логики и воображения. В курсе информатики ученику следует учиться четко и педантично реализовывать алгоритм своих действий, уметь абсолютно точно записывать его на бумаге и безошибочно вводить в компьютер. Это постепенно отучает учеников от неточности, нечеткости, неконкретности, расплывчатости, небрежности и т.п.

Разумеется, все эти три цели взаимосвязаны и не могут реализовываться в отрыве друг от друга. Нельзя получить воспитательный эффект, игнорируя практическую сторону содержания обучения.

Общие цели в реальном учебном процессе трансформируются в конкретные цели обучения. Однако это оказывается непростой задачей, что подтверждается многолетним опытом преподавания информатики в школе. На формулировку конкретных целей влияет то обстоятельство, что наука информатика сама находится в стадии интенсивного развития. Кроме того, изменение парадигмы образования, в частности его стандартов, порождает изменение содержания этих целей, увеличивает долю субъективизма в их определении.

Когда впервые вводился курс ОИВТ в 1985 году, то выдвигалась стратегическая цель «…всестороннее и глубокое овладение молодежью вычислительной техникой», что в то время рассматривалось как важный фактор ускорения научно‐технического прогресса в нашей стране и ликвидации намечавшегося отставания от передовых индустриальных стран Запада. Основными целями курса тогда были:

Формирование представлений учащихся об основных правилах и методах реализации решения задач на ЭВМ;

Освоение элементарных умений пользоваться микрокомпьютерами для решения задач;

Ознакомление с ролью ЭВМ в современном производстве.

Ученые и методисты тогда считали, что введение курса информатики создаст возможности для изучения школьных предметов на качественно новом уровне за счет повышен наглядности, возможности моделирования на ЭВМ сложных объектов и процессов, сделает усвоение учебного материала более доступным, расширит учебные возможности школьников, активизирует их познавательную деятельность.

В качестве конкретной цели была поставлена компьютерная грамотность учащихся. Понятие компьютерной грамотности достаточно быстро стало одним из новых понятий дидактики. Постепенно выделили следующие компоненты, определяющие содержание компьютерной грамотности школьников:

Понятие об алгоритме, его свойствах, средствах и методах описания, понятие о программе как форме представления алгоритма для ЭВМ;

Основы программирования на одном из языков;

Практические навыки обращения с ЭВМ;

Принцип действия и устройство ЭВМ;

Применение и роль компьютеров в производстве и других отраслях деятельности человека.

Как видно из содержания, компьютерная грамотность (КГ) является расширением понятия алгоритмической культуры учащихся (АК) путем добавления некоторых «машинных» компонентов. Эта естественная преемственность всегда подчеркивалась, и методистами даже ставилась задача «завершить формирование ведущих компонентов алгоритмической культуры школьников как основы формирования компьютерной грамотности», что можно представить схемой: АК → КГ

В компонентах компьютерной грамотности учащихся можно выделить следующее содержание:

1. Умение работать на компьютере. Это умение есть умение на пользовательском уровне, и включает в себя: умение включить и выключить компьютер, владение клавиатурой, умение вводить числовые и текстовые данные, корректировать их, запускать программы. Сюда относят также умения работать с прикладными программами: текстовым редактором, графическим редактором, электронной таблицей, игровыми и обучающими программами. По своему содержанию эти умения доступны младшим школьникам и даже дошкольникам.

2. Умение составлять программы для ЭВМ. Большинство методистов считает, что подготовка программистов не может быть целью общеобразовательной школы, однако, понимание принципов программирования должно входить в содержание образования по информатике. Этот процесс должен быть растянут во времени и начинаться с формирования умений составления простейших программ, включающих организацию ветвлений и циклов. Такие программы можно писать с использованием простых и наглядных «доязыковых» средств. В старших классах в условиях профильного обучения возможно изучение одного из языков программирования. При этом важно не столько изучение языка, сколько формирование прочных знаний о фундаментальных правилах составления алгоритмов и программ.

3. Представления об устройстве и принципах действия ЭВМ. В школьном курсе физики рассматриваются различные физические явления, лежащие в основе работы ЭВМ, а в курсе математики – наиболее общие положения, относящиеся к принципам организации вычислений на компьютере. В курсе информатики учащиеся должны освоить сведения, позволяющие им ориентироваться в возможностях отдельных компьютеров и их характеристиках. Этот компонент компьютерной грамотности имеет важное профориентационное и мировоззренческое значение.

4. Представление о применении и роли компьютеров на производстве и других отраслях деятельности человека, а также о социальных последствиях компьютеризации. Этот компонент должен формироваться не только на уроках информатики – необходимо, чтобы школьный компьютер использовался учениками при изучении всех учебных предметов. Выполнение школьниками проектов и решение задач на компьютере должно охватывать различные сферы применения вычислительной техники и информационных технологий.

Компоненты компьютерной грамотности можно представить четырьмя ключевыми словами: общение, программирование, устройство, применение. В обучении школьников недопустимо делать акцент на каком либо одном компоненте, ибо это приведет к существенному перекосу в достижении конечных целей преподавания информатики. Например, если доминирует компонент общение, то курс информатики становится преимущественно пользовательским и нацеленным на освоение компьютерных технологий. Если акцент делается на программировании, то цели курса сведутся к подготовке программистов.

Первая программа курса ОИВТ 1985 года достаточно быстро была дополнена второй версией, расширившей цели курса и в которой появилось новое понятие «информационная культура учащихся». Требования этой версии программы, взятые в минимальном объеме, ставили задачу достижения первого уровня компьютерной грамотности, а взятые в максимальном объеме – воспитание информационной культуры учащихся. Содержание информационной культуры (ИК) было образовано путем некоторого расширения прежних компонентов компьютерной грамотности и добавления новых. Эта эволюция целей образования школьников в области информатики представлена на схеме:

АК → КГ → ИК → ?

Как видно из схемы, в конце цепочки целей поставлен знак вопроса, что объясняется динамизмом целей образования, необходимостью соответствовать современному уровню развития науки и практики. Например, сейчас возникла потребность включения в содержание понятия ИК представлений об ИКТ, владение которыми становится обязательным элементом общей культуры современного человека. Некоторые методисты предлагают формировать информационно‐технологическую культуру школьников. В информационную культуру школьника входят следующие компоненты :

1. Навыки грамотной постановки задач для решения с помощью ЭВМ.

2. Навыки формализованного описания поставленных задач, элементарные знания о методах математического моделирования и умения строить простые математические модели поставленных задач.

3. Знание основных алгоритмических структур и умение применять эти знания для построения алгоритмов решения задач по их математическим моделям.

4. Понимание устройства и функционирования ЭВМ, элементарные навыки составления программ для ЭВМ

по построенному алгоритму на одном из языков программирования высокого уровня.

5. Навыки квалифицированного использования основных типов современных информационно‐коммуникационных систем для решения с их помощью практических задач, понимание основных принципов, лежащих в основе функционирования этих систем.

6. Умение грамотно интерпретировать результаты решения практических задач с помощью ЭВМ и применять эти результаты в практической деятельности.

В то же время, в реальных условиях школы формирование информационной культуры во всех её аспектах представляется проблематичным. Дело здесь не только в том, что не все школы в достаточной степени обеспечены современной компьютерной техникой и подготовленными учителями. Использование многовариантных программ, в частности авторских, привело к тому, что не только содержание, но и цели образования школьников в области информатики в 1990 годы стали трактоваться по‐разному. Их стали формулировать крайне нечётко, размыто и даже неопределённо, поэтому в 22.02.1995 г. было предложено использовать 3‐х этапную структуру курса информатики средней школы с распределёнными целевыми установками:

Первый этап (1‐6 кл.) – пропедевтический. На этом этапе происходит первоначальное знакомство с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров на уроках математики, русского языка и других предметов.

Второй этап (7‐9 кл.) – базовый курс, обеспечивающий обязательный общеобразовательный минимум подготовки по информатике. Он направлен на овладение методами и средствами информационных технологий решения задач, формирование навыков сознательного и рационального использования компьютеров в своей учебной, а затем профессиональной деятельности.

Третий этап (10‐11 кл.) – продолжение образования в области информатики как профильного обучения, дифференцированного по объёму и содержанию в зависимости от интересов и направленности допрофессиональной подготовки школьников.

Предложение трехэтапной структуры курса было определенным шагом вперед, способствовало преодолению разброда и шатаний в определении целей, позволило сделать изучение информатики в школе непрерывным. Новый базисный учебный план 2004 года и образовательный стандарт по информатике закрепили такую структуру курса. Более раннее изучение информатики делает реальным систематическое использование учащимися ИКТ при изучении всех школьных предметов.

Дальнейшее развитие курса информатики должно быть связано с усилением его общеобразовательной функции, с возможностями решения общих задач обучения, развития и воспитания школьников. Большинство отечественных методистов склоняются к тому, что будущее школьного предмета информатики состоит в развитии фундаментальной компоненты, а не в «погружении» в область информационных технологий. Информатика предлагает новый способ мышления и деятельности человека, позволяет формировать целостное мировоззрение и научную картину мира, и это следует использовать в обучении школьников.

В развитых странах Запада цели изучения информатики в школе носят, в основном, прикладной характер и состоят в подготовке школьников к разнообразным видам деятельности, связанным с обработкой информации, освоением средств информатизации и информационных технологий, что считается залогом успешного экономического развития общества.

Вопросы и задания

1. Приведите структуру школьной информатики.

2. Приведите дату введения в средних школах предмета ОИВТ.

3. Опишите этапы истории обучения информатике в отече‐ственной школе.

4. Когда появились факультативы по информатике и как они назывались?

5. Перечислите основные компоненты алгоритмической культуры учащихся.

6. С какого года в школы стали поступать отечественные компьютерные классы?

7. Приведите компоненты содержания компьютерной грамотности школьников.

Лекция 3.

Тема : Структура и содержание обучения основам информатики

План:

Формирование концепции и содержания непрерывного курса информатики для средней школы. Структура обучения основам информатики в средней общеобразовательной школе (Пропедевтика обучения информатике в начальной школе. Базовый курс информатики. Профильное изучение информатики в старших классах).

Стандартизация школьного образования в области информатики. Назначение и функции стандарта в школе. Государственный общеобязательный стандарт по информатике среднего общего образования РК.

Говоря о содержании курса информатики в школе, следует иметь в виду требования к содержанию образования, которые изложены в Законе Об образовании». В содержании образования всегда выделяют три компоненты: воспитание, обучение и развитие. Обучение занимает центральное положение. Содержание общего образования включает в себя информатику двояким образом – как отдельный учебный предмет и через информатизацию всего школьного образования. На отбор содержания курса информатики влияют две группы основных факторов, которые находятся между собой в диалектическом противоречии:

1. Научность и практичность. Это означает, что содержание курса должно идти от науки информатики и соответствовать современному уровню её развития. Изучение информатики должно давать такой уровень фундаментальных познаний, который действительно может обеспечить подготовку учащихся к будущей профессиональной деятельности в различных сферах.

2. Доступность и общеобразовательность. Включаемый материал должен быть посилен основной массе учащихся, отвечать уровню их умственного развития и имеющемуся запасу знаний, умений и навыков. Курс также должен содержать все наиболее значимые, общекультурные, общеобразовательные сведения из соответствующих разделов науки информатики.

Школьный курс информатики, с одной стороны, должен быть современным, а с другой – быть элементарным и доступным для изучения. Совмещение этих двух во многом противоречивых требований является сложной задачей.

Содержание курса информатики складывается сложно и противоречиво. Оно должно соответствовать социальному заказу общества в каждый данный момент его развития. Современное информационное общество выдвигает перед школой задачу формирования у подрастающего поколения информатической компетентности. Понятие информатической компетентности достаточно широко и включает в себя несколько составляющих: мотивационную, социальную когнитивную, технологическую и др. Когнитивная составляющая курса информатики направлена на развитие у детей внимания, воображения, памяти, речи, мышления, познавательных способностей. Поэтому при определении содержания курса следует исходить из того, что информатика обладает большой способностью формирования этих сфер личности и, в особенности, мышления школьников. Общество нуждается в том, чтобы вступающие в жизнь молодые люди обладали навыками использования современных информационных технологий. Все это требует дальнейших исследований и обобщения передового педагогического опыта.

Машинный и безмашинный варианты курса информатики . Первая программа курса ОИВТ 1985 года содержала три базовых понятия: информация, алгоритм, ЭВМ. Эти понятия определяли обязательный для усвоения объём теоретической подготовки. Содержание обучения складывалось на основе компонентов алгоритмической культуры и, затем, компьютерной грамотности учащихся. Курс ОИВТ предназначался для изучения в двух старших классах – в девятом и десятом. В 9 классе отводилось 34 часа (1 час в неделю), а в 10 классе содержание курса дифференцировалось на два варианта – полный и краткий. Полный курс в 68 часов был рассчитан для школ, располагающих вычислительными машинами или имеющими возможность проводить занятия со школьниками на вычислительном центре. Краткий курс объёмом 34 часа предназначался для школ, не имеющих возможности проводить занятия с применением ЭВМ. Таким образом, сразу были предусмотрено 2 варианта – машинный и безмашинный. Но в безмашинном варианте планировались экскурсии объёмом 4 часа на вычислительный центр или предприятия, использующие ЭВМ.

Однако реальное состояние оснащения ЭВМ школ и готовности учительских кадров привели к тому, что курс был изначально ориентирован на безмашинный вариант обучения. Большая часть учебного времени отводилась на алгоритмизацию и программирование.

Первый собственно машинный вариант курса ОИВТ был разработан в 1986 году в объёме 102 часа для двух старших классов. В нем на знакомство с ЭВМ и решение задач на ЭВМ отводилось 48 часов. В то же время существенного отличия от безмашинного варианта не было. Но, тем не менее, курс был ориентирован на обучение информатике в условиях активной работы учащихся с ЭВМ в школьном кабинете вычислительной техники (в это время начались первые поставки в школы персональных компьютеров). Курс был достаточно быстро сопровожден соответствующим программным обеспечением: операционной системой, файловой системой, текстовым редактором. Были разработаны прикладные программы учебного назначения, которые быстро стали неотъемлемым компонентом методической системы преподавателя информатики. Предполагалась постоянная работа школьников с ЭВМ на каждом уроке в кабинете информатики. Было предложено три вида организационного использования кабинета вычислительной техники – проведение демонстраций на компьютере, выполнение фронтальных лабораторных работ и практикума.

Безмашинный вариант сопровождался несколькими учебными пособиями, например, учебники А.Г. Кушниренко с соавторами в то время получили широкое распространение. Тем не менее, и машинный вариант во многом продолжал линию на алгоритмизацию и программирование, и меньше содержал фундаментальные основы информатики.

В 1990 годы с поступлением компьютеров в большинстве школ курс информатики начал преподаваться в машинном варианте, а основное внимание учителя стали уделять освоению приемов работы на компьютере и информационных технологий. Однако следует отметить, что реалии третьего десятилетия преподавания информатики показывают наличие в настоящее время безмашинного варианта или большо его доли в значительном числе школ, не только сельских, но и городских. Преподавание в начальной школе также ориентировано, в основном, на безмашинное изучение информатики, чему есть некоторое объяснение – время работы на компьютере для учащихся начальной школы не должно превышать 15 минут. Поэтому учебники информатики для них содержат лишь небольшую долю собственно компьютерного компонента.

Стандарт образования по информатике. Введение образовательного стандарта стало шагом вперед, а само его понятие прочно вошло в арсенал основных понятий дидактики.

Государственный стандарт содержит нормы и требования, определяющие:

Обязательный минимум содержания основных образовательных программ;

Максимальный объём учебной нагрузки учащихся;

Уровень подготовки выпускников образовательных учреждений;

Основные требования к обеспечению образовательного процесса.

Назначение образовательного стандарта состоит в том, что он призван:

Обеспечить равные возможности для всех граждан в получении качественного образования;

Установить преемственность образовательных программ на разных ступенях образования;

Предоставить право гражданам на получение полной и достоверной информации о государственных нормах и требованиях к содержанию образования и уровню подготовки выпускников образовательных учреждений.

Образовательный стандарт по информатике и ИКТ является нормативным документом, определяющим требования:

К месту курса информатики в учебном плане школы;

К уровню подготовки учащихся в виде набора требований к ЗУНам и научным представлениям;

К технологии и средствам проверки и оценки достижения школьниками требований образовательного стандарта.

В стандарте можно выделить два основных аспекта: Первый аспект – это теоретическая информатика и сфера пересечения информатики и кибернетики: системно‐информационная картина мира, общие закономерности строения и функционирования самоуправляемых систем.

Второй аспект – это информационные технологии. Этот аспект связан с подготовкой учащихся к практической деятельности и продолжению образования.

Модульное построение курса информатики. Накопленный опыт преподавания, анализ требований стандарта и рекомендаций ЮНЕСКО показывают, что в курсе информатики можно выделить две основные составляющие – теоретическая информатика и информационные технологии. Причем информационные технологии постепенно выходят на первый план. Поэтому ещё в базисном учебном плане 1998 года рекомендовалось теоретическую информатику включать в образовательную область «математика и информатика», а информационные технологии – в образовательную область «Технология». Сейчас в основной и старшей школе от такого деления отказались.

Выход из этого противоречия можно найти в модульном построении курса, что позволяет учесть быстро меняющееся содержание, дифференциацию учебных заведений по их профилю, оснащенности компьютерами и программным обеспечением, наличию квалифицированных кадров.

Образовательные модули можно классифицировать на базовые, дополнительные и углубленные, что обеспечивает соответствие содержания курса информатики и ИКТ базисному учебному плану.

Базовый модуль – он является обязательным для изучения, обеспечивающий минимальное содержание образования в соответствии с образовательным стандартом. Базовый модуль часто еще называют базовым курсом информатики и ИКТ, который изучается в 7–9 классах. В тоже время в старшей школе обучение информатике может быть на базовом уровне или на профильном уровне, содержание которого также определяется стандартом.

Дополнительный модуль – призван обеспечить изучение информационных технологий и аппаратных средств.

Углубленный модуль – призван обеспечить получение углубленных знаний, в том числе необходимых для поступления в вуз.

Помимо такого деления на модули, среди методистов и учителей в ходу выделение в содержании курса таких модулей, которые соответствуют делению на основные темы. Таким образом, названные выше модули в свою очередь делят для удобства на более мелкие модули.

Вопросы и задания

1. Какие главные факторы влияют на отбор содержания курса информатики?

2. Опишите машинный и безмашинный варианты курса ОИВТ 1985 и 1986 гг.

3. Каково назначение стандарта?

4. Проанализируйте содержание стандарта по информатике и ИКТ для основной школы и вы‐пишите требования к умениям школьников.

5. Проанализируйте содержание образовательного стандарта по информатике и ИКТ для старшей школы на базовом уровне и выпишите требования к умениям учащихся.

6. Почему принято модульное построение современного курса информатики?

7. Что обеспечивает изучение базового модуля курса информатики?

8. Что обеспечивает изучение дополнительного модуля курса информатики?

9. Что обеспечивает изучение углубленного модуля (школьного компонента) курса информатики?

10. Проанализируйте базисный учебный план школы и выпишите число недельных часов на изучение информатики в каждом классе.

Лекция 4.

Тема: Пропедевтика основ информатики в начальной школе

План:

Задачи пропедевтики обучения информатике в начальной школе. Возможное построение обучения основам информатики в младших классах: отдельный курс, практикум по информатике, включение элементов информатики в содержание обучения математике, языку и природоведению. Анализ содержания существующих курсов информатики для начальной школы.

Игра, как ведущая форма организации занятий по информатике в начальной школе. Методика применения ППС с целью обучения и развития учащихся.

Методика преподавания информатики в начальной школе является относительно новым направлением для отечественной дидактики. Хотя отдельные попытки обучения младших школьников и даже дошкольников имели место на раннем этапе проникновения информатики в школу, систематическое преподавание ведётся с начала 1990 годов. Ещё в 1980 году С. Пейперт разработал язык программирования ЛОГО, который был первым языком программирования, специально созданным для обучения детей младшего возраста. Работая на компьютере с этим программным средством, дети рисовали на экране различные рисунки с помощью исполнителя Черепашка. Через рисование они познавали основы алгоритмизации, а хорошая наглядность Черепашка позволяла обучать даже дошкольников. Эти эксперименты показали принципиальную возможность успешного обучения детей младшего возраста работе на компьютере, что в то время было достаточно революционным.

Активную работу по обучению программированию младших школьников вел академик А.П. Ершов. Ещё в 1979 году он писал, что изучать информатику дети должны со 2 класса: «…формирование этих навыков должно начинаться одновременно с выработкой основных математических понятий и представлений, т.е. в младших классах общеобразовательной школы. Только при этом условии программистский стиль мышления сможет органично войти в систему научных знаний, навыков и умений, формируемых школой. В более позднем возрасте формирование такого стиля может оказаться связанным с ломкой случайно сложившихся привычек и представлений, что существенно осложнит и замедлит этот процесс» (см.: Ершов А.П., Звенигородский Г.А., Первин Ю.А. Школьная информатика (кон‐цепции, состояния, перспективы) // ИНФО, 1995, № 1, С. 3).

В настоящее время группа ученых и методистов под руководством Ю.А. Первина, ученика и соратника академика А.П. Ершова, активно разрабатывает вопросы преподавания информатики младшим школьникам. Они считают, что информатизация современного общества выдвигает в качестве социального заказа школе формирование у подрастающего поколения операционного стиля мышления. Наряду с формированием мышления, большое значение придается мировоззренческому и технологическому аспектам школьного курса информатики. Поэтому в начальных классах следует начинать формировать фундаментальные представления и знания, необходимые для операционного стиля мышления, а также развивать навыки использования информационных технологий в различных отраслях человеческой деятельности.

Введение информатики в начальных классах имеет цель сделать её изучение непрерывным во всей средней школе, и направлено на обеспечение всеобщей компьютерной грамотности молодежи. Психологи считают, что развитие логических структур мышления эффективно идёт до 11 летнего возраста, и если запоздать с их формированием, то мышление ребёнка останется незавершенным, а его дальнейшая учеба будет протекать с затруднениями. Изучение информатики на раннем этапе обучения, наряду с математикой и русским языком, эффективно способствует развитию мышления ребенка. Информатика обладает большой формирующей способностью для мышления, и это необходимо всегда помнить учителю при планировании и проведении занятий. Поэтому основное внимание при изучении информатики следует уделять развитию мышления, а также освоению работы на компьютере.

Что касается содержания обучения, то оно находится в стадии интенсивных поисков, экспериментов и становления. Тем не менее, просматривается определённая линия на выдерживание принципа концентрического построение курса информатики и ИКТ. Это концентрическое построение можно проследить как от класса к классу, когда, переходя в следующий класс, ученики повторяют ранее изученный материал на новом уровне, так и при переходе от пропедевтического курса информатики в начальной школе к базовому курсу в основной школе. Построение многих профильных курсов для старшей школы по отношению к базовому курсу, в своей значительной части, также носит концентрический характер.

От внимания методистов и учителей часто ускользает такой важный момент, как развитие тонкой моторики рук младших школьников. На этот аспект обычно обращают внимание учителя труда, где это есть одна из задач обучения. На уроках информатики при работе на компьютере ученикам приходится на первых порах осваивать работу на клавиатуре и приёмы рабы с мышью. Это достаточно сложный процесс в условиях, когда ученику приходится следить за результатом тонких движений руки и пальцев не непосредственно, а на экране компьютера. Осложняющим обстоятельством является то, что в отечественных школах в кабинетах стоят компьютеры, сделанные для взрослых пользователей. Их клавиатура и мышь сконструированы под руки взрослого человека и вовсе не подходят для ребёнка. Всё это задерживает процесс освоения детьми приемов работы с клавиатурой и мышью, сказывается на развитии тонкой моторики пальцев и рук, а ведь через их тонкие движения стимулируется развитие мозга ребёнка. В связи с этим интерес представляет использование для обучения ноутбуков, у которых клавиатура существенно меньшего размера и более удобна для детских рук. Они занимают мало места на столе и могут использоваться в обычных классных комнатах.

Вопросы и задания

1. Кто был инициатором обучения информатике младших школьников в нашей стране?

2. Почему информатику следует изучать с первых классов школы?

3. Почему приоритетным при изучении информатики следует считать развитие мышления школьников?

4. Каковы цели обучения информатике в начальной школе?

5. Приведите перечень общеучебных навыков, которые следует формировать при изучении информатики в начальной школе.

6. Составьте перечень основных умений работы на компьютере, которыми должны овладеть младшие школьники.

7. Почему учителю информатики следует обращать внимание на необходимость развития тонкой моторики пальцев и рук? Как это делать?

Лекция 5.

Тема: Базовый курс школьной информатики

План:

Базовый курс информатики в среднем звене школы (7-9 кл.). Задачи базового курса информатики, обеспечивающего обязательный минимум общеобразовательной подготовки учащихся в области информатики и информационных технологий. Курс информатики в зарубежной школе (страны СНГ и Западной Европы, США). Основные компоненты содержания базового курса информатики, определяемые требованиями стандарта по этому предмету. Анализ основных существующих программ базового курса:

Обзор учебников по информатике: сравнительный анализ. Анализ методических пособий по курсу информатики. Методика и критерий оценки качества школьных учебников по информатике.

Как уже отмечалось выше, в школьном обучении реализуется концепция непрерывного курса информатики и ИКТ. Курс включает в себя три этапа: пропедевтический, базовый и профильный. Базовый курс информатики составляет ядро всего курса, поскольку обеспечивает реализацию обязательного минимума содержания образования по информатике так, как это отражено в образовательном стандарте.

В настоящее время, базовый курс информатики преподается в основной школе с 7 по 9 класс по 1 часу в неделю, т.е. по 34 часов в год.

Как видно, в обоих вариантах объём всего базового курса составляет 102 часов, как и предусмотрено в базисном учебном плане основной школы.

Примерная программа курса включает в себя следующие разделы:

1. Информация и информационные процессы.

2. Компьютер как универсальное устройство обработки информации.

3. Обработка текстовой информации.

4. Обработка графической информации.

5. Мультимедийные технологии.

6. Обработка числовой информации.

7. Представление информации.

8. Алгоритмы и исполнители.

9. Формализация и моделирование.

10. Хранение информации.

11. Коммуникационные технологии.

12. Информационные технологии в обществе.


Похожая информация.


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ»

Кафедра педагогики и психологии

Допустить к защите

Зав. кафедрой __________________

_______________________________

«______» _______________ 20___г.

Курсовая работа

Модульная технология на уроках информатики в школе

Казань 2011


C одержание

Введение

Модульное обучение в школе заключается в последовательном усвоении учеником модульных единиц и модульных элементов. Гибкость и вариативность модульной технологии профессионального обучения особенно актуальны в условиях рыночных отношений при количественных и качественных изменениях рабочих мест, перераспределении рабочей силы, необходимости массового переобучения работников. Нельзя не учитывать и фактор кратковременности обучения в условиях ускоренных темпов научно-технического прогресса.

Актуальность данной работы заключается в том, что быстроразвивающийся технический прогресс диктует новые условия для обучения и предъявляет новые требования в профессии. В рамках обучения учащийся частично или полностью самостоятельно может работать с предложенной ему учебной программой, которая содержит в себе целевую программу действий, базы информации и методическое руководство для достижения поставленных дидактических целей.

В этом случае функции преподавателя могут изменяться от информационно-контролирующих до консультационно-координирующих. Технология модульного обучения базируется на объединении принципов системного квантования и модульности. Первый принцип составляет методологическую основу теории «сжимания», «сворачивания» учебной информации. Второй принцип является нейрофизиологической основой метода модульного обучения. При модульном обучении нет строго заданного срока обучения.

Он зависит от уровня подготовленности учащегося, его предыдущих знаний и умений, желаемого уровня получаемой квалификации. Обучение может прекратится после овладения любого модуля. Учащийся может выучить один или несколько модулей и в дальнейшем получить узкую специализацию или овладеть всеми модулями и получить широкопрофильную профессию. Для выполнения работы все модульные единицы и модульные элементы можно не изучать, а только те, которые необходимы для выполнения работы с конкретными требованиями. С другой стороны, профессиональные модули могут состоять из модульных единиц, которые относятся к разным специальностям и разным областям деятельности.

Целью данной работы является изучение модульных технологий на уроках информатики в школе.

Достижение данной цели способствует решение следующих задач:

Рассмотреть особенности модульной технологии обучения в школе;

Изучить методику модульной технологии обучения в школе;

Применить практически методику модульной технологии на уроке в общеобразовательной школе.

Объектом исследования является построение урока информатики в школе с применением модульных технологий в обучающем процессе. Предметом исследования является применение модульных технологий в процессе урока информатики в общеобразовательной средней школе.

При написании данной работы использовалась специальная литература, методические пособия, справочники, учебники для ВУЗов.

Глава 1. Особенности модульной технологии обучения

1.1. Анализ предметной системы обучения и необходимость

её модернизации на основании интегрирования предметов

Сегодня главной в образовании является предметная система обучения. Если посмотреть на источники ее создания, то можно увидеть, что она создана в начале интенсивного развития и дифференциации наук, быстрого увеличения знаний в разных областях человеческой деятельности.

Дифференциация наук привела к созданию огромного количества предметов (дисциплин). Наиболее наглядно это проявилось в школьном и профессиональном обучении, учащиеся учебных заведений изучают до 25 предметов, которые слабо связаны между собой. Известно, что каждая конкретная наука является логической системой научных знаний, методов и средств познания 1 .

Цикл специальных предметов представляет собой синтез фрагментов научно-технических и производственных знаний и видов производственной деятельности. Предметная система является эффективной при подготовке учащихся и студентов по фундаментальным и некоторым прикладным дисциплинам, в которых теоретические знания и практические умения в конкретных областях знаний или деятельности приведены в систему. Предметная система органично вписалась в классно-урочную форму организации обучения.

К другим преимуществам предметной системы обучения можно отнести сравнительно простую методику составления учебно-программной документации и подготовку преподавателя к занятиям. В то же время предметная система имеет существенные недостатки, основными из которых являются:

Системность знаний в учебных предметах связана с большим количеством фактического учебного материала, терминологической загруженностью, неопределенностью и несогласованностью объема учебного материла с уровнем его сложности;

Большое количество предметов неизбежно ведет к дублированию учебного материала и связана с увеличением времени на обучение;

Не согласованная учебная информация, которая поступает от разных предметов, усложняет для учеников ее систематизацию и, как следствие, затрудняет формирование из них целостной картины окружающего мира;

Поиск межпредметных связей усложняет учебный процесс и не всегда позволяет систематизировать знания учащихся;

Предметное обучение, как правило, носит информационно-репродуктивный характер: ученики получают «готовые» знания, а формирование умений и навыков достигается путем воссоздания образцов деятельности и увеличения количества исполнения ими заданий. Это не обеспечивает эффективность обратных связей и, как следствие, усложняется управление обучения учащихся, что приводит к снижению его качества;

Поточный учет успешности учащихся, как один из важных инструментов совершения обратных связей, недостаточно эффективен из-за относительно больших (15-20%) ошибок знаний и умений учащихся по субъективной методике преподавателей;

Разнообразность предметов, которые одновременно изучаются, большой объем разнопланового по подобности учебного материала приводит к перегруженности памяти учащихся и к невозможности реального усвоения учебного материала всеми учащимися;

Жесткая структура учебно-программной документации, лишняя регламентация учебного процесса, которые включают жесткие временные рамки урока и сроков обучения;

Слабая дифференциация обучения, ориентирование на «среднего» учащегося;

Преимущественно фронтально-групповая организационная форма обучения вместо индивидуальной 1 .

Из практики профессионального обучения известно, что учащиеся лучше воспринимают и усваивают комплексные интегрированные знания. Поэтому возникает необходимость создания соответствующей системы обучения, разработки теоретических основ и методик интегрирования предметов, разработки учебных программ на блочно-модульной основе и содержания дидактических элементов.

1.2. Общие понятия о модульной системе обучения

Модульная система обучения была разработана Международной организацией труда (МОТ) в 70-х годах двадцатого века как обобщение опыта подготовки рабочих кадров в экономически развитых странах мира.

Эта система быстро распространилась по всему миру и, по сути, стала международным стандартом профессионального обучения. Она обеспечивает мобильность трудовых ресурсов в условиях НТП и быстрое переобучение работников, которые освобождаются при этом. Модульная система разрабатывалась в рамках популярной тогда индивидуализированной системы обучения Ф. Келлера, поэтому включило в себя ряд позитивных моментов:

Формирование конечных и промежуточных целей обучения;

Распределение учебного материала на отдельные разделы;

Индивидуализированные темпы обучения;

Возможность перехода к изучению нового раздела, если полностью усвоен предыдущий материал;

Регулярный тестовый контроль знаний 2 .

Появление модульного метода – попытка ликвидировать недостатки следующих существующих методов учебной подготовки:

Направленность профессиональной подготовки на получение профессии в общем, а не на выполнение конкретной работы, что мешало устраиваться на работу выпускникам учебных заведений;

Негибкость подготовки относительно требований отдельных производств и технологичных процессов;

Несоответствие подготовки довольно сильно дифференцированному общеобразовательному уровню разных групп населения;

Отсутствие учета индивидуальных особенностей учеников.

Главное в модульном обучении – возможность индивидуализации обучения. С точки зрения Дж. Рассела, наличие альтернативных (выборочных) модулей и свободный их выбор позволяет всем ученикам усвоить учебный материал, но в индивидуальном темпе. Важно, чтоб задания для учеников были настолько сложны, чтоб они работали с напряжением своих умственных способностей, но, вместе с тем, настолько сложными, чтоб не было навязчивого педагогического руководства.

В потребности вольного выбора модуля из альтернативного набора скрывается одна из возможностей формирования готовности к выбору как черты личности, важной также и для формирования самостоятельности в образовании. В то же время при индивидуализированной системе обучения от учащегося требуется полное усвоение учебного материала с конкретным испытанием по каждому модулю. Гибкость модульного обучения. Дж. Рассел представляет модуль, как единицу учебного материала, которая отвечает отдельной теме.

Модули могут группироваться в разные комплекты. Один и тот же модуль может отвечать отдельным частям требований, которые касаются разных курсов. Добавляя «новые» и исключая «старые», можно, не изменяя структуру, составить любую учебную программу с высоким уровнем индивидуализации. Соглашаясь с такой трактовкой «гибкости», ряд исследователей возражают против рассмотрения модулей как единиц учебного материала, которые соответствуют одной теме 1 .

Гибкость в таком понимании приведет к фрагментарности обучения. Существует элективность обучения (возможность свободного выбора действий). Следуя системе Ф. Келлера, важной чертой модульного обучения является отсутствие жестких организационных временных рамок обучения: оно может проходить в удобное для учащегося время. Отсутствие жестких временных рамок позволяет ученику продвигаться в обучении со скоростью, которая соответствует его способностям и наличия свободного времени: ученик может выбирать не только необходимые ему модули, но и порядок их изучения.

Тема : Структура и содержание обучения основам информатики

План:

Формирование концепции и содержания непрерывного курса информатики для средней школы. Структура обучения основам информатики в средней общеобразовательной школе (Пропедевтика обучения информатике в начальной школе. Базовый курс информатики. Профильное изучение информатики в старших классах).

Стандартизация школьного образования в области информатики. Назначение и функции стандарта в школе. Государственный общеобязательный стандарт по информатике среднего общего образования РК.

Говоря о содержании курса информатики в школе, следует иметь в виду требования к содержанию образования, которые изложены в Законе Об образовании». В содержании образования всегда выделяют три компоненты: воспитание, обучение и развитие. Обучение занимает центральное положение. Содержание общего образования включает в себя информатику двояким образом – как отдельный учебный предмет и через информатизацию всего школьного образования. На отбор содержания курса информатики влияют две группы основных факторов, которые находятся между собой в диалектическом противоречии:

  1. Научность и практичность. Это означает, что содержание курса должно идти от науки информатики и соответствовать современному уровню её развития. Изучение информатики должно давать такой уровень фундаментальных познаний, который действительно может обеспечить подготовку учащихся к будущей профессиональной деятельности в различных сферах.
  2. Доступность и общеобразовательность. Включаемый материал должен быть посилен основной массе учащихся, отвечать уровню их умственного развития и имеющемуся запасу знаний, умений и навыков. Курс также должен содержать все наиболее значимые, общекультурные, общеобразовательные сведения из соответствующих разделов науки информатики.

Школьный курс информатики, с одной стороны, должен быть современным, а с другой – быть элементарным и доступным для изучения. Совмещение этих двух во многом противоречивых требований является сложной задачей.

Содержание курса информатики складывается сложно и противоречиво. Оно должно соответствовать социальному заказу общества в каждый данный момент его развития. Современное информационное общество выдвигает перед школой задачу формирования у подрастающего поколения информатической компетентности. Понятие информатической компетентности достаточно широко и включает в себя несколько составляющих: мотивационную, социальную когнитивную, технологическую и др. Когнитивная составляющая курса информатики направлена на развитие у детей внимания, воображения, памяти, речи, мышления, познавательных способностей. Поэтому при определении содержания курса следует исходить из того, что информатика обладает большой способностью формирования этих сфер личности и, в особенности, мышления школьников. Общество нуждается в том, чтобы вступающие в жизнь молодые люди обладали навыками использования современных информационных технологий. Все это требует дальнейших исследований и обобщения передового педагогического опыта.

Машинный и безмашинный варианты курса информатики . Первая программа курса ОИВТ 1985 года содержала три базовых понятия: информация, алгоритм, ЭВМ. Эти понятия определяли обязательный для усвоения объём теоретической подготовки. Содержание обучения складывалось на основе компонентов алгоритмической культуры и, затем, компьютерной грамотности учащихся. Курс ОИВТ предназначался для изучения в двух старших классах – в девятом и десятом. В 9 классе отводилось 34 часа (1 час в неделю), а в 10 классе содержание курса дифференцировалось на два варианта – полный и краткий. Полный курс в 68 часов был рассчитан для школ, располагающих вычислительными машинами или имеющими возможность проводить занятия со школьниками на вычислительном центре. Краткий курс объёмом 34 часа предназначался для школ, не имеющих возможности проводить занятия с применением ЭВМ. Таким образом, сразу были предусмотрено 2 варианта – машинный и безмашинный. Но в безмашинном варианте планировались экскурсии объёмом 4 часа на вычислительный центр или предприятия, использующие ЭВМ.

Однако реальное состояние оснащения ЭВМ школ и готовности учительских кадров привели к тому, что курс был изначально ориентирован на безмашинный вариант обучения. Большая часть учебного времени отводилась на алгоритмизацию и программирование.

Первый собственно машинный вариант курса ОИВТ был разработан в 1986 году в объёме 102 часа для двух старших классов. В нем на знакомство с ЭВМ и решение задач на ЭВМ отводилось 48 часов. В то же время существенного отличия от безмашинного варианта не было. Но, тем не менее, курс был ориентирован на обучение информатике в условиях активной работы учащихся с ЭВМ в школьном кабинете вычислительной техники (в это время начались первые поставки в школы персональных компьютеров). Курс был достаточно быстро сопровожден соответствующим программным обеспечением: операционной системой, файловой системой, текстовым редактором. Были разработаны прикладные программы учебного назначения, которые быстро стали неотъемлемым компонентом методической системы преподавателя информатики. Предполагалась постоянная работа школьников с ЭВМ на каждом уроке в кабинете информатики. Было предложено три вида организационного использования кабинета вычислительной техники – проведение демонстраций на компьютере, выполнение фронтальных лабораторных работ и практикума.

Безмашинный вариант сопровождался несколькими учебными пособиями, например, учебники А.Г. Кушниренко с соавторами в то время получили широкое распространение. Тем не менее, и машинный вариант во многом продолжал линию на алгоритмизацию и программирование, и меньше содержал фундаментальные основы информатики.

В 1990 годы с поступлением компьютеров в большинстве школ курс информатики начал преподаваться в машинном варианте, а основное внимание учителя стали уделять освоению приемов работы на компьютере и информационных технологий. Однако следует отметить, что реалии третьего десятилетия преподавания информатики показывают наличие в настоящее время безмашинного варианта или большо его доли в значительном числе школ, не только сельских, но и городских. Преподавание в начальной школе также ориентировано, в основном, на безмашинное изучение информатики, чему есть некоторое объяснение – время работы на компьютере для учащихся начальной школы не должно превышать 15 минут. Поэтому учебники информатики для них содержат лишь небольшую долю собственно компьютерного компонента.

Стандарт образования по информатике . Введение образовательного стандарта стало шагом вперед, а само его понятие прочно вошло в арсенал основных понятий дидактики.

Государственный стандарт содержит нормы и требования, определяющие:

  • обязательный минимум содержания основных образовательных программ;
  • максимальный объём учебной нагрузки учащихся;
  • уровень подготовки выпускников образовательных учреждений;
  • основные требования к обеспечению образовательного процесса.

Назначение образовательного стандарта состоит в том, что он призван:

  • обеспечить равные возможности для всех граждан в получении качественного образования;
  • сохранить единство образовательного пространства;
  • защитить обучающихся от перегрузок и сохранить их психическое и физическое здоровье;
  • установить преемственность образовательных программ на разных ступенях образования;
  • предоставить право гражданам на получение полной и достоверной информации о государственных нормах и требованиях к содержанию образования и уровню подготовки выпускников образовательных учреждений.

Образовательный стандарт по информатике и ИКТ является нормативным документом, определяющим требования:

  • к месту курса информатики в учебном плане школы;
  • к содержанию курса информатики в виде обязательного минимума содержания образования;
  • к уровню подготовки учащихся в виде набора требований к ЗУНам и научным представлениям;
  • к технологии и средствам проверки и оценки достижения школьниками требований образовательного стандарта.

В стандарте можно выделить два основных аспекта: Первый аспект – это теоретическая информатика и сфера пересечения информатики и кибернетики: системно‐информационная картина мира, общие закономерности строения и функционирования самоуправляемых систем.

Второй аспект – это информационные технологии. Этот аспект связан с подготовкой учащихся к практической деятельности и продолжению образования.

Модульное построение курса информатики . Накопленный опыт преподавания, анализ требований стандарта и рекомендаций ЮНЕСКО показывают, что в курсе информатики можно выделить две основные составляющие – теоретическая информатика и информационные технологии. Причем информационные технологии постепенно выходят на первый план. Поэтому ещё в базисном учебном плане 1998 года рекомендовалось теоретическую информатику включать в образовательную область «математика и информатика», а информационные технологии – в образовательную область «Технология». Сейчас в основной и старшей школе от такого деления отказались.

Выход из этого противоречия можно найти в модульном построении курса, что позволяет учесть быстро меняющееся содержание, дифференциацию учебных заведений по их профилю, оснащенности компьютерами и программным обеспечением, наличию квалифицированных кадров.

Образовательные модули можно классифицировать на базовые, дополнительные и углубленные, что обеспечивает соответствие содержания курса информатики и ИКТ базисному учебному плану.

Базовый модуль – он является обязательным для изучения, обеспечивающий минимальное содержание образования в соответствии с образовательным стандартом. Базовый модуль часто еще называют базовым курсом информатики и ИКТ, который изучается в 7–9 классах. В тоже время в старшей школе обучение информатике может быть на базовом уровне или на профильном уровне, содержание которого также определяется стандартом.

Дополнительный модуль – призван обеспечить изучение информационных технологий и аппаратных средств.

Углубленный модуль – призван обеспечить получение углубленных знаний, в том числе необходимых для поступления в вуз.

Помимо такого деления на модули, среди методистов и учителей в ходу выделение в содержании курса таких модулей, которые соответствуют делению на основные темы. Таким образом, названные выше модули в свою очередь делят для удобства на более мелкие модули.

Вопросы и задания

  1. Какие главные факторы влияют на отбор содержания курса информатики?
  2. Опишите машинный и безмашинный варианты курса ОИВТ 1985 и 1986 гг.
  3. Каково назначение стандарта?
  4. Проанализируйте содержание стандарта по информатике и ИКТ для основной школы и вы‐пишите требования к умениям школьников.
  5. Проанализируйте содержание образовательного стандарта по информатике и ИКТ для старшей школы на базовом уровне и выпишите требования к умениям учащихся.
  6. Почему принято модульное построение современного курса информатики?
  7. Что обеспечивает изучение базового модуля курса информатики?
  8. Что обеспечивает изучение дополнительного модуля курса информатики?
  9. Что обеспечивает изучение углубленного модуля (школьного компонента) курса информатики?

Проанализируйте базисный учебный план школы и выпишите число недельных часов на изучение информатики в каждом классе.

Advertisements