06.07.2020

Новостной и аналитический портал "время электроники". Бестопливные двигатели: обзор, принцип работы. Двигатель на магнитах Математическое описание вд с постоянными магнитами


Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель - двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50-100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90 о С сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

Содержание:

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует особо отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации. Поэтому прежде чем пытаться изготовить такой двигатель для бытовых нужд, следует тщательно ознакомиться с его конструкцией и принципом работы.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен . В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.


В интернете можно почерпнуть много полезной информации, и мне хотелось бы обсудить с сообществом возможность создания аппаратов (двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

В обсуждениях данных двигателей говорят что теоретически они возможно могут работать НО согласно закона сохранения энергии это невозможно.

Тем не менее что же собой представляет постоянный магнит:

Есть в сети информация о таких аппаратах:

По замыслу их изобретателей они созданы для получения полезной энергии но очень многие считают что в их конструкциях скрываются некие недоработки препятствующие свободной работе аппаратов для получения полезной энергии,(а работоспособность аппаратов всего лишь ловко скрытое мошенничество) . Попробуем обойти эти препятствия и проверить существование возможности создания аппаратов(двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

И вот вооружившись листом бумаги карандашом и резинкой попробуем добиться усовершенствования приведённых выше аппаратов

ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ

Настоящая полезная модель относится к магнитным аппаратам вращения, а также к области энергетического машиностроения.

Формула полезной модели:

Аппарат магнитного вращения состоящий из роторного (вращающегося) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и статорного (статического) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и расположенных на одной оси вращения, где роторный диск неподвижно соединён с валом вращения, а статорный диск соединён с валом посредством подшипника; какой отличается тем что в его конструкции применены постоянные магниты, сконструированные таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, а так же в конструкции применены статорный (статический) и роторный (вращающийся) диски с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами.

Предшествующий уровень техники:

А) Хорошо известен магнитный двигатель Кохеи Минато. Патент США № 5594289

В патенте описано магнитный аппарат вращения в котором на валу вращения расположены два ротора с размещёнными на них постоянными магнитами обычной формы (прямоугольный параллелепипед), где все постоянные магниты размещены наискосок радиальной линии направления ротора. А с наружной периферии роторов расположено два электромагнита на импульсном возбуждении которых и базируется вращение роторов.

Б)Так же хорошо известен магнитный двигатель Перендев

В патенте на него описан аппарат магнитного вращения в котором на валу вращения расположен ротор из немагнитного материала в котором расположены магниты, вокруг которого расположен статор из немагнитного материала в котором расположены магниты.

Изобретение обеспечивает магнитный двигатель, который включает: вал (26) с возможностью вращения вокруг своей продольной оси, первый набор (16) магнетиков (14) расположены на валу (26) в роторе (10) для вращения вала (26), и второй набор (42) магниты (40), расположенных в статоре (32), расположенных вокруг ротора (10), причем второй набор (42) магнетиков (40), во взаимодействии с первого набора (16) магнетиков (14), в котором магнетизм (14,40) первого и второго множеств (16,42) магнетизма, по крайней мере частично магнитно экранированы, чтобы сосредоточить свое магнитное поле в направлении разрыва между ротор (10) и статора (32)

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройстве вместо статора, используемого в обычных электродвигателях, или как в патенте,где используется два электромагнита на импульсном возбуждении, задействована система кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, и для сокращения,в данном ниже описании, названая статорным (статическим) диском.

В) Имеется ещё и такая схема аппарата магнитного вращения:

В схеме используется двухстаторная система и при этом в роторе по получению энергии вращения задействованы оба полюса постоянных магнитов. Но в данном ниже устройстве эффективность по получению энергии вращения будет гораздо выше.

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройства, вместо статора, используемого в обычных электродвигателях, или как в патенте, где используется два статора, внешний и внутренний; задействована система кольцеобразных обойм (секций) из постоянных магнитов измененной конфигурации, и для сокращения, в данном ниже описании, названа статорных (статическим) диском

В данном ниже устройстве ставится цель улучшить технические характеристики, а так же увеличить мощность аппаратов магнитного вращения использующих силу отталкивания одноимённых полюсов постоянных магнитов.

Реферат:

Настоящая заявка на полезную модель предлагает аппарат магнитного вращения.(схема 1, 2, 3, 4, 5.)

Устройство магнитного вращения содержит: вращающийся вал-1 к которому неподвижно закреплён диск-2 являющийся роторным (вращающимся) диском, на котором неподвижно закреплены а)кольцеобразная-3а и б)цилиндрическая-3б обоймы с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Так же Устройство магнитного вращения содержит и статорный диск-4 (схема: 1а, 3.) стационарно закреплённый и соединённый с вращающимся валом-1 посредством подшипника-5. к стационарному диску неподвижно прикреплены кольцеобразные (схема 2,3) магнитные обоймы (6а, 6б) с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Сами постоянные магниты (7) сконструированы таким образом что противоположные полюса расположены под углом 90 град. друг к другу (схема 1, 2.) и только на внешнем статоре (6б) и внутреннем роторе (3б) они обычной конфигурации: (8).

Обоймы с магнитами (6а, 6б, 3а.) выполнены кольцеобразной формы, а обойма (3б) цилиндрической формы, таким образом чтобы при совмещении статорного диска (4) с роторным диском (2) (схема 1, 1а.) обойма с магнитами(3а) на роторном диске (2) помещалась в середину обоймы с магнитами (6б) на статорном диске (4) ; обойма с магнитами (6а) на статорном диске (4) помещалась в середину обоймы с магнитами (3а) на роторном диске (2) ; и обойма с магнитами (3б) на роторном диске (2) помещалась в середину обоймы с магнитами (6а)на статорном диске (4).

Работа устройства:

При соединении (совмещении) статорного диска (4) с роторным диском (2) (схема 1, 1а, 4)

Магнитное поле постоянного магнита (2а) обоймы с магнитами статорного диска (2) воздействует на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска.

Начинается поступательное движение отталкивания одноимённых полюсов постоянных магнитов (3а) и (2а) которое преобразуется во вращательное движение роторного диска на котором неподвижно закреплены кольцеобразная (3) и цилиндрическая (4) обоймы с магнитами согласно направлению (на схеме 4).

Далее роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (1а) обоймы с магнитами (1) статорного диска начинает воздействовать на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (1а) и (3а) порождает поступательное движение отталкивания одноимённых полюсов магнитов (1а) и (3а), которое преобразуется во вращательное движение роторного диска согласно направления (на схеме 4) И роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска начинает воздействовать на магнитное поле постоянного магнита (4а) из обоймы с магнитами (4) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (4а) порождает поступательное движение отталкивания одноимённых полюсов постоянных магнитов (2а) и (4а), которое преобразуется во вращательное движение роторного диска согласно направлению (на схеме 5) .

Роторный диск поворачивается в положение при котором, магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска, начинает воздействовать на магнитное поле постоянного магнита (3б) из обоймы постоянных магнитов (3) роторного диска; воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (3б) порождает поступательное движение отталкивания одноимённых полюсов магнитов (2а) и (3б) положив, при этом, начало нового цикла, магнитных взаимодействий между постоянными магнитами, в рассматриваемом, для примера работы устройства, 36-градусном секторе дисков вращающего устройства.

Таким образом по окружности дисков с магнитными обоймами, состоящими из постоянных магнитов, предлагаемого устройства, расположено 10 (десять) секторов, процесс который был описан выше происходит в каждом из которых. И за счёт описанного выше процесса происходит движение вращения обойм с магнитами (3а и 3б) , и так как обоймы (3а и 3б) неподвижно присоединены к диску (2) то синхронно с движением вращения обойм (3а и 3б) происходит движение вращения диска (2) . Диск (2) неподвижно соединён (с помощью шпонки, либо шлицевое соединение) с валом вращения (1) . А через вал вращения (1) вращательный момент передаётся далее, предположительно на электрогенератор.

Для увеличения мощности двигателей такого типа можно использовать добавление в схеме дополнительных магнитных обойм,состоящих из постоянных магнитов, на дисках (2) и (4) (согласно схеме № 5).

А так же с той же целью (для увеличения мощности) в схему двигателя можно добавить ещё не одну пару дисков (роторного и статического). (схема № 5 и № 6)

Хочу ещё дополнить что данная схема именно магнитного двигателя будет более эффективной если в магнитных обоймах роторного и статического дисков будет разное количество постоянных магнитов, подобранное таким образом, чтобы в системе вращения было или минимальное количество, либо не было совсем «точек баланса»- определение именно для магнитных двигателей. Это точка в которой во время вращательного движения обоймы с постоянными магнитами (3)(схема 4) постоянный магнит (3а) во время своего поступательного движения наталкивается на магнитное взаимодействие одноименного полюса постоянного магнита (1а) которое и следует преодолеть с помощью грамотной расстановки постоянных магнитов в обоймах роторного диска (3а и 3б) и в обоймах статического диска (6а и 6б) таким образом чтобы при прохождении таких точек сила отталкивания постоянных магнитов и последующее их поступательное движение, компенсировали силу взаимодействия постоянных магнитов при преодолении магнитного поля противодействия в данных точках. Либо использовать метод экранизации.

Ещё в двигателях такого типа можно использовать вместо постоянных магнитов электромагниты (соленоид).

Тогда схема работы (уже электродвигателя) описанная выше будет подходить, только уже в конструкцию будет включена электрическая цепь.



Вид сверху разреза аппарата магнитного вращения.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией -(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

3б) Цилиндрическая обойма (секция) с постоянными магнитами обычной конфигурации.

6а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

6б) Кольцеобразная обойма (секция) с постоянными магнитами обычной конфигурации.

7) Постоянные магниты изменённой конфигурации-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

8) Постоянные магниты обычной конфигурации.


Вид сбоку в разрезе аппарата магнитного вращения

1) Вал вращения.

2) Роторный (вращающийся) диск.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией- (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

1а) постоянный магнит обычной конфигурации из обоймы (1) статорного диска.

2) сектор в 36 градусов обоймы с постоянными магнитами (2а) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу статорного диска.

2а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (2) статорного диска.

3) сектор в 36 градусов обоймы с постоянными магнитами (3а) и (3б) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу роторного диска.

3а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

3б) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

4) сектор в 36 градусов обоймы с постоянными магнитами (4а) обычной конфигурации статорного диска.

4а) постоянный магнит обычной конфигурации из обоймы (4) статорного диска.


Рисунок разреза вида сбоку АМВ(аппарата магнитного вращения) с двумя статорными дисками и двумя роторными дисками. (Прототип заявляемого большей мощности)

1) Вал вращения.

2), 2а) Роторные (вращающиеся) диски, на которых неподвижно закреплены обоймы: (2 рот), и (4 рот) с постоянными магнитами с изменённой конфигурацией - (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4), 4а) Статорные (статические, неподвижные) диски, на которых неподвижно закреплены обоймы: (1стат) и (5s) с постоянными магнитами обычной конфигурации; а также обойма (3стат) с постоянными магнитами с изменённой конфигурацией - (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4 рот) Кольцеобразная обойма с постоянными магнитами (4а) с изменённой конфигурацией - (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу). Роторного (вращающегося) диска.

5) Цилиндрическая обойма с постоянными магнитами (5а) обычной конфигурации (прямоугольный параллелепипед). статорного (статического) диска.

К сожалению рисунок № 1 содержит ошибки.

Как Мы видим в схемы существующих магнитных двигателей можно вносить существенные изменения всё более их совершенствуя....

Практически все происходящее в нашем быту целиком зависит от электроэнергии, однако существуют некоторые технологии, позволяющие совсем избавиться от проводной энергии. Давайте вместе рассмотрим, можно ли изготовить магнитный двигатель своими руками, в чес состоит принцип его работы, как он устроен.

Принцип работы

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  1. Катушка индуктивности.
  2. Магнит подвижный.
  3. Пазы катушек.
  4. Центральная ось;
  5. Шарикоподшипник;
  6. Стойки.
  7. Диски;
  8. Постоянные магниты;
  9. Закрывающие магниты диски;
  10. Шкив;
  11. Приводной ремень.
  12. Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее. Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами. В реальности они просто друг к другу повернутся. Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными. Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Карикатура вечного двигателя

Наука давно не стоит на месте и развивается все больше и больше. Благодаря науке было изобретено множество предметов, которыми мы пользуемся в повседневной жизни. Однако, на протяжении многих столетий перед наукой всегда стоял вопрос изобретения такого устройства, которое бы могло работать не потребляя никакой энергии извне, работая вечно. Такого результата добивались многие. Однако кому это удалось? Создан ли такой двигатель? Об этом и о многом другом мы и поговорим в нашей статье.

Двигатель Стирлинга простейшей конструкции. Свободнопоршневой. Игорь Белецкий

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель – это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась ? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Вечный двигатель на магнитах

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Американский БТГ выдвинут на Нобелевскую премию

A Brief Tour of the IEC Factory Floor

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Двигатель Перендева основанный на взаимодействии магнитов

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс - презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

Варианты разработок вечных двигателей

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя. Удачи!

Как разоряют и убивают изобретателей двигателей на воде. Почему беЗтопливные технологии под запретом