02.07.2023

Эффект тесла генератор электроэнергии. Сделай своими руками трансформатор Тесла (Tesla coil). Самые известные способы генерации свободной мощности


Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует - энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле - пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Эфир и его свойства

Многие его разработки считаются утраченными ещё со времени его смерти . Одни из них известны исключительно как принципы, другие - всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.

Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина - Земля, а другая - её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.

А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию» . С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии - отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Энергия воздушной тяги

Эта идея - типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.

Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра, которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.

Незамысловатая домашняя мини-электростанция

Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.

Для его изготовления нужно:

Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.

Применение магнитов и маховика

Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок - в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.

Основная деталь - барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.

Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.

В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.

Простой генератор Тесла

Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.

Основание тому - существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.

Начинать самостоятельные эксперименты лучше с доступных для изготовления в домашних условиях приспособлений. Одно из них - простейший трансформатор Тесла. Это устройство позволяет буквально «получать энергию из воздуха». Его принципиальная схема изображена на рис. 3.В этой установке используются две пластины. Одна закапывается в землю, а другая поднимается на некоторую высоту над её поверхностью.

На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.

Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.

С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.

Устройство разработки Стивена Марка

Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4). С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства - электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU). Изобретение подтверждено патентом США от 27 июля 2006 года.

Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.

Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.

Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:

Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца - пластик, фанера, мягкий полиуретан.

Размеры кольца:

  • ширина: 25 мм;
  • внешний диаметр: 230 мм;
  • внутренний диаметр: 180 мм;
  • толщина: 5 мм.

Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.

Внешняя коллекторная катушка , она же - выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.

Каждая из катушек управления (рис.7) - плоского типа, по 90 градусов для установки вращающегося магнитного поля.

Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.

Выводы с наконечниками (рис. 7) - это два вывода внутренней коллекторной катушки.

Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.

Схема соединений делится на 4 секции:

  • входа;
  • управления;
  • катушек;
  • выхода.

Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала

и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.

Для реализации секции управления МОСФИТами (MOSFET) лучшее решение - стандартный интерфейс IRF7307, предлагаемый конструктором.

Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.

Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.

Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух - образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:


После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

  1. Увеличить диаметры катушек и сечение провода в 1,1 – 2,5 раза.
  2. Добавить терминал в форме тороида.
  3. Поменять источник постоянного напряжения на переменный с высоким повышающим коэффициентом, выдающим напряжение 3–5 кВ.
  4. Изменить первичный контур согласно схеме на рисунке 6.
  5. Добавить надёжное заземление.

Искровые трансформаторы Тесла могут достигать мощности до 4,5 кВт, следовательно, создавать стримеры больших размеров. Наилучший эффект получается при достижении одинаковых показателей частоты обоих контуров. Реализовать это можно расчётом деталей в специальных программах – vsTesla, inca и другие. Скачать одну из русскоязычных программ можно по ссылке: http://ntesla.at.ua/_fr/1/6977608.zip .

В начале ХХ века электротехника развивалась бешеными темпами. Промышленность и быт получили такое количество электрических технических инноваций, что этого им хватило для дальнейшего развития еще на двести лет вперед. И если постараться выяснить, кому мы обязаны таким революционным рывком в области приручения электрической энергии, то учебники физики назовут десяток имен, безусловно, повлиявших на ход эволюции. Но ни один из учебников не может толком объяснить, почему до сих пор умалчиваются достижения Николы Теслы и кем был на самом деле этот загадочный человек.

Кто вы, мистер Тесла?

Тесла - это новая цивилизация. Ученый был невыгоден правящей элите, невыгоден и сейчас. Он настолько опередил свое время, что до сих пор его изобретения и эксперименты не всегда находят объяснение с точки зрения современнейшей науки. Он заставлял светиться ночное небо над всем Нью-Йорком, над Атлантическим океаном и над Антарктидой, он превращал ночь в белый день, в это время волосы и кончики пальцев у прохожих светились необычным плазменным светом, из-под копыт лошадей высекались метровые искры.

Теслу боялись, он мог запросто поставить крест на монополии по продаже энергии, а если бы захотел, то мог бы сдвинуть с трона всех Рокфеллеров и Ротшильдов вместе взятых. Но он упрямо продолжал эксперименты, до тех пор, пока не погиб при таинственных обстоятельствах, а его архивы были выкрадены и местонахождение их до сих пор неизвестно.

Принцип действия аппарата

О гении Николы Тесла современные ученые могут судить только по десятку изобретений, не попавших под масонскую инквизицию. Если вдуматься в суть его экспериментов, то можно только представить, какой массой энергии мог запросто управлять этот человек. Все современные электростанции вместе взятые не способны выдать такой электрический потенциал, которым владел один единственный ученый, имея в распоряжении самые примитивные устройства, одно из которых мы соберем сегодня.

Трансформатор Тесла своими руками простейшая схема и ошеломляющий эффект от его применения, только даст понятие о том, какими методиками манипулировал ученый и, если честно, в очередной раз поставит в тупик современную науку. С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы - это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первички на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году. Устройство выглядит невероятно просто и состоит из:

  • первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  • вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  • разрядника;
  • конденсатора;
  • излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов - в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:


Мы же соберем прибор для получения энергии эфира самым простым способом - на полупроводниковых транзисторах. Для этого нам будет необходимо запастись простейшим комплектом материалов и инструментов:


Схемы трансформатора Тесла

Устройство собирается по одной из прилагаемых схем, номиналы могут меняться, поскольку от них зависит эффективность работы устройства. Сперва наматывается около тысячи витков эмалированного тонкого провода на пластиковый сердечник, получаем вторичную обмотку. Витки лакируются или покрываются скотчем. Количество витков первичной обмотки подбирается опытным путем, но в среднем, это 5-7 витков. Далее устройство подключается согласно схеме.

Для получения эффектных разрядов достаточно поэкспериментировать с формой терминала, излучателя искрового свечения, а о том, что устройство при включении уже работает, можно судить по светящимся неоновым лампам, находящихся в радиусе полуметра от прибора, по самостоятельно включающихся радиолампах и, конечно, по плазменным вспышкам и молниям на конце излучателя.

Игрушка? Ничего подобного. По этому принципу Тесла собирался построить глобальную систему беспроводной передачи энергии, использующую энергию эфира. Для реализации такой схемы необходимо два мощных трансформатора, установленных в разных концах Земли, работающих с одинаковой резонансной частотой.

В этом случае полностью отпадает необходимость в медных проводах, электростанциях, счетах об оплате услуг монопольных поставщиков электроэнергии, поскольку любой человек в любой точке планеты мог бы пользоваться электричеством совершенно беспрепятственно и бесплатно. Естественно, что такая система не окупится никогда, поскольку платить за электричество не нужно. А раз так, то и инвесторы не спешат становиться в очередь на реализацию патента Николы Теслы № 645 576.

В 1891 г. Никола Тесла разработал трансформатор (катушку) при помощи которого он ставил эксперименты с электрическими разрядами высоких напряжений. Разработанное Теслой устройство состояло из блока питания, конденсатора, первичной и вторичной катушек, установленных так, что пики напряжения чередуются между ними, и двух электродов, разведенных друг от друга на расстояние. Устройство получило имя своего изобретателя.
Принципы, открытые Тесла при помощи этого устройства, используется сейчас в различных областях, начиная от ускорителей частиц, заканчивая телевизорами и игрушками.

Трансформатор Тесла может быть сделал своими руками. Данная статья посвящена рассмотрению этого вопроса.

Сначала необходимо определиться с размером трансформатора. Можно построить большой прибор, если позволяет бюджет. Следует помнить, что это устройство генерирует разряды высокого напряжения (создают микромолнии), которые нагревают и расширяют окружающий воздух (создают микрогром). Создаваемые электрические поля могут вывести из строя другие электрические приборы. Поэтому строить и запускать трансформатор Тесла не стоит дома; безопаснее делать это в удаленных местах, например, в гараже или сарае.

Величина трансформатора будет зависеть от расстояния между электродами (от величины возникающей искры), которое в свою очередь будет зависеть от потребляемой мощности.

Составные части и сборка схемы трансформатора Тесла

  1. Нам понадобится трансформатор или генератор с напряжением 5-15 кВ и силой тока 30-100 миллиампер. Эксперимент не удастся, если эти параметры будут не соблюдены.
  2. Источник тока нужно подключить к конденсатору. Важен параметр емкости конденсатора, т.е. способность удерживать электрический заряд. Единица измерения емкости – фарад – Ф. Он определяется как 1 ампер-секунда (или кулон) на 1 вольт. Как правило, емкость измеряется в мелких единицах – мкФ (одна миллионная доля фарада) или пФ (одна триллионная доля фарада). Для напряжения 5 кВ конденсатор должен иметь номинал 2200 пФ.
  3. Еще лучше соединить несколько конденсаторов последовательно. В этом случае каждый конденсатор будет удерживать часть заряда, общий удерживаемый заряд увеличится кратно.

  4. Конденсатор(ы) подключается к искровику — промежуток воздуха, между контактами которого происходит электрический пробой. Для того, чтобы контакты выдерживали тепло, выделяемое искрой во время разряда, необходимый их диаметр должен быть 6 мм. минимум. Искровик необходим для возбуждения резонансных колебаний в контуре.
  5. Первичная катушка. Делается из толстого медного провода или трубки диаметром 2,5-6 мм., который закручивается в спираль в одной плоскости в количестве 4-6 витков
  6. Первичная катушка подключается к разряднику. Конденсатор и первичная катушка должны образовывать первичный контур, попадающий в резонанс с вторичной катушкой.
  7. Первичная катушка должны быть хорошо изолирована от вторичной.
  8. Вторичная катушка. Делается из тонкой эмалированной медной проволоки (до 0,6 мм). Проволока наматывается на полимерную трубку с пустым сердечником. Высота трубки должна составлять 5-6 ее диаметров. На трубку следует аккуратно намотать 1000 витков. Вторичная катушка может быть помещена внутрь первичной катушки.
  9. Вторичную катушку одним концом обязательно заземляют отдельно от других приборов. Лучше всего заземление непосредственно «в землю». Второй провод вторичной катушки подключается к тору (излучателю молний).
  10. Тор можно сделать из обыкновенной вентиляционной гофры. Он размещается над вторичной катушкой.
  11. Вторичная катушка и тор образуют вторичный контур.
  12. Включаем питающий генератор (трансформатор). Трансформатор Тесла работает.

Отличное видео с объяснением принципов работы трансформатора Теслы

Меры предосторожности

Будьте осторожны: напряжение, накапливаемое в трансформаторе Тесла, очень велико и при пробоях ведет к гарантированной смерти. Сила тока также очень большая, гораздо превосходящая величину, безопасную для жизни.

Практического применения трансформатора Тесла нет. Это экспериментальная установка, подтверждающая наши знания о физике электричества.

С эстетической же точки зрения, эффекты, которые порождает трансформатор Тесла, удивительны и красивы. Они во многом зависят от того, насколько правильно он собран, достаточной ли силы ток, правильно ли резонируют контуры. Эффекты могут включать в себя свечение или разряды, образуемые на второй катушке, а могут – полноценные молнии, пробивающие воздух из тора. Возникающие свечения смещены в ультрафиолетовый диапазон спектра.

Вокруг трансформатора Тесла формируется высокочастотное поле. Поэтому, например, при помещении в это поле энергосберегающей лампочки, она начинает светиться. Это же поле приводит к образования большого количества озона.

Новомодный феномен резонансного трансформатора Николы Тесла возник недавно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательных выступлений, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных цепей, первичной и вторичной, см. рис. 1а.

1. Первичная цепь, как генерирующая колебания определенной частоты, состоит из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Когда искровой промежуток находится в проводящем состоянии, LC–элементы связаны последовательно, формируя цепь определенной частоты.

2. Вторичной цепью является последовательный колебательный контур, который состоит из резонансной катушки индуктивности L2, открытой емкостью С, образованной заземлением и сферой, см. рис. 1а.

Частоты колебаний обоих цепей определены их структурными параметрами и должны совпадать. Выходное напряжение трансформатора Тесла исчисляется десятками тысяч вольт благодаря повышенному количеству витков во вторичной цепи. Вторичная цепь резонансного трансформатора Тесла, это открытый колебательный контур, который был открыт ранее Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора — равный ему так называемый ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 18-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину, где электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое Е-поле? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Только режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии.

Рассмотрим работу трансформатора Тесла, как последовательного колебательного контура:

Этот контур необходимо рассматривать как обычный LC–элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (?=0), если ХL = -Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Рассмотрим схему последовательного колебательного контура изображенную на рис. 3, где добротности контура Q может находиться в пределах 20-50 и много выше.

Здесь полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2 = Q * U1

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1

f (МГц) L (мкГн) ХL (Ом) C (пФ) −Xc (Ом) ?f (кГц) Q U1/U2 (В)
7 30,4 1360 17 1340 270 26 100/2600

Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны по определению.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т.е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Это связано с увеличением тока смещения. Тоже происходит с колебательным контуром, нагруженным активной нагрузкой. Таким образом, размеры сферы трансформатора определяет его емкость С и соответственно диктует не только ширину полосы пропускания, но и сопротивление излучения, которое в идеале должно равняться сопротивлению среды. Здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности и соответственно приведет к уменьшению эффективности резонансного трансформатора в целом.

Рассмотрим емкостной элемент трансформатора Тесла, как двухполюсный элемент связи со средой:

Вполне справедливо называть емкостной трансформатор Тесла, диполем Тесла, ведь «диполь» означает di(s) дважды + polos полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой (сфера+земля).

В рассматриваемом диполе, емкость излучателя является единственным элементом связи со средой. Излучатель антенны, это два электрода внедренные в среду, см. Рис. 4. и при появлении на них потенциала напряжения, оно автоматически прикладывается к среде, вызывая в ней некий потенциал –Q и +Q. Если это напряжение переменно, то и потенциалы меняют свой знак на противоположный с той же частотой, а в среде появляется ток смещения. Так как прикладываемые напряжение и ток синфазны по определению последовательного колебательного контура, то и электромагнитное поле в среде претерпевает те же изменения.

Вспомним, что в диполе Герца, где напряжение сначала прикладывается к длинному проводнику, то для волны в ближней зоне характерно, что Е=1, а Н?1. Это связано с тем, что в этом проводнике существуют реактивные LC элементы, которые вызывают задержку фазы поля Н, т.к. полотно антенны соизмеримо с?.

В диполе Тесла, где ХL = −Хс (реактивной составляющей нет), излучающий элемент длиной до 0,05 ? не резонансен и представляет лишь емкостную нагрузку. При толстом и коротком излучателе, его индуктивность практически отсутствует, она компенсируется сосредоточенной индуктивностью. Здесь напряжение прикладывается сразу к среде, где одновременно возникают поле Е и поле Н. Для волны диполя Тесла характерно, что Е=Н=1, т.е. волна в среде сформирована изначально. Здесь мы отождествляем напряжение в контуре с электрической составляющей поля Е (единица измерения В/м), а ток смещения с магнитной составляющей поля Н (единица измерения А/м), только диполь Тесла излучает синфазное поле Е и поле Н.

Попробуем еще раз рассмотреть данное утверждение немного в другой плоскости:

Допустим, мы имеем напряжение, приложенное к пластинам (реактивной составляющей нет, она скомпенсирована), которые нагружены на активное сопротивление среды Rср, как на участок электрической цепи (Рис. 4).

Вопрос: Имеется ли ток в среде (в цепи) именно в этот момент времени?

Ответ: Да, чем больше приложено напряжение к активному сопротивлению среды, тем больше ток смещения в этот же период времени, и это не противоречит закону Дж. К. Максвелла и если хотите закону Ома для участка цепи. По этому синфазное изменение величины напряжения и тока в последовательном контуре в режиме последовательного резонанса, вполне справедливо порождают синфазность полей Е и Н в среде, см. Рис. 4б.

Подводя итог, мы можем сказать, что емкостной излучатель создает вокруг себя мощное и концентрированное электромагнитное излучение. Диполь Тесла обладает особенностью накопления энергии, что характерно только последовательному LC-контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно по результатам таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Диполь Тесла — это высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения, не участвующим в излучении.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Краткая справка: Электромагнитная волна была открыта Максвеллом в 60-х годах 18 века при помощи емкостного излучателя. На рубеже 20-го века Н. Тесла доказал возможность передачи энергии на расстоянии при помощи емкостных излучателей резонансного трансформатора.

Г. Герц, продолжая опыты с электромагнитным полем и опираясь на теорию Максвелла в 1888 году доказал, что электромагнитное поле излучаемое емкостным излучателем равно полю излучаемое электрическим вибратором.

В настоящее время диполь Герца и магнитная рамка К. Брауна, открытая в 1916 году, широко используются на практике, а емкостной излучатель незаслуженно забыт. Уважая заслуги Максвелла и Тесла, автор данной статьи в память о них провел лабораторные эксперименты с емкостной антенной и принял решение обнародовать их. Эксперименты были проведены на частоте 7 МГц в домашних условиях и показали не плохие результаты.

ИТАК! Многочисленные эксперименты показали, что резонансные элементы любого контура можно изменять в разных пределах, и как с ними поступишь, так они и поведут себя. Интересно то, что если уменьшать излучающую емкость открытого контура, то для получения резонанса приходится увеличивать индуктивность. При этом на краях излучателя и других неровностях появляются стримеры (от англ. Streamer). Streamer — это тускло видимая ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля и использовать изобретение Тесла, как диполь для передачи энергии на расстояния, т.е. как емкостную антенну. И все же, Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна. Тем не менее, результаты экспериментов привели к единственно правильному условию, когда LC-параметры стали соответствовать табличным данным (табл. 1).

Проверка принципа действия диполя Тесла на практике

Для проведения экспериментов с трансформатором Тесла над конструкцией не пришлось долго думать, здесь помог радиолюбительский опыт. В качестве излучателей вместо сферы и земли были взяты две гофрированные алюминиевые (вентиляционные) трубы диаметром 120 мм и длиной по 250 мм. Удобство применения заключалось в том, что их можно растягивать или сжимать как витки катушки, тем самым, меняя емкость контура в целом и соответственно соотношение L/С. «Трубы–емкости» располагались горизонтально на бамбуковой палке с расстоянием 100 мм. Катушка индуктивности L2 (30 мкГн) проводом 2 мм, была вынесена ниже оси цилиндров на 50 см. с тем, чтобы не создавать вихревых токов в сфере излучателей. Еще лучше будет, если катушку вынести за один из излучателей, располагая ее на одной оси с ними, где эл. магнитное поле минимально и имеет форму «пустой воронки». Образованный, этими элементами колебательный контур был настроен в режиме последовательного резонанса, где было соблюдено основное правило, где ХL = -Хс. Катушка связи L1 (1 виток, 2 мм), обеспечивала связь с трансивером мощностью 40 Вт. При ее помощи было настроено согласование импровизированного диполя Тесла с фидером 50 Ом, что обеспечило режим бегущей волны и полную отдачу мощности без отражения обратно в генератор. Данный режим в трансформаторе Тесла обеспечивает разрядник. Фидер длиной 5 метров для чистоты эксперимента был обеспечен с обоих сторон ферритовыми фильтрами.

Для сравнения испытывалось три антенны:

  • диполь Тесла (L= 0.7м, КСВ=1,1),
  • разрезной укороченный диполь Герца (L = 2×0,7м, удлинительная катушка, фидер 5 метров защищенный ферритовыми фильтрами КСВ=1,0),
  • горизонтальный полуволновой диполь Герца (L = 19,3м, фидер защищен ферритовыми фильтрами КСВ=1,05).

На расстоянии 3 км. в черте города был включен передатчик с постоянной несущей сигнала.

Диполь Тесла (7 МГц) и укороченный диполь с удлиняющей катушкой, по очереди размещались возле кирпичного здания на расстоянии всего 2 метра, и на момент эксперимента находились в равных условиях на высоте (10-11 м).

В режиме приема диполь Тесла превосходил укороченный диполь Герца на 2-3 балла (12-20 дБ) по шкале S-метра трансивера и более.

Затем вывешивался заранее настроенный полуволновый диполь Герца. Высота подвеса 10-11 м. на расстоянии от стен в 15-20 м.

По усилению диполь Тесла уступал полуволновому диполю Герца примерно на 1 балл (6-8 дБ). Диаграммы направленности всех антенн совпадали. Стоит отметить, что полуволновый диполь был размещен не в идеальных условиях, а практика построения диполя Тесла требует новых навыков. Все антенны находились внутри двора (четыре здания) как в экранированном котле.

Общие выводы

Рассматриваемый диполь Тесла на практике работает почти как полноценный полуволновый диполь Герца, что подтверждает равенство электромагнитных полей от электрического и емкостного диполя. Он подчиняется принципам двойственности, что не идет в разрез с теорией антенн. Несмотря на свои малые размеры (0,015-0,025 ?), диполь Тесла осуществляет связь с пространством с помощью емкостных излучателей. Он создают в пространстве вокруг излучателя синфазное поле Е и поле Н, из чего следует, что поле диполя Тесла в пределах излучателей уже сформировано и имеет «мини-сферу», что приводит к ряду новых выводов о свойствах этого диполя. Таким образом, диполь Тесла имеет все основания для практических экспериментов в радиолюбительской службе в диапазонах коротких, средних и особенно длинных волн. Думаю, что любителям длинноволновой связи (137 кГц) стоит обратить на этот эксперимент особое внимание, где КПД рассматриваемого диполя в десятки раз выше экспериментальных антенн на основе укороченного диполя Герца или резонансных рамок.

Вспомним, где на практике применяется диполь Тесла? К сожалению, для гражданского контингента до некоторого времени он был закрыт. Молчание нарушил американский радиолюбитель Т. Хард, который в среде радиолюбителей представил миру радиолюбителей небезызвестную ЕН–антенну.

Справка

Такой тип антенн (см. Рис. 5) с середины 40-х годов с успехом практиковался в войсковой мобильной КВ радиосвязи многих стран, в том числе и СССР. Рабочий диапазон частот — 1,5-12 МГц. Непосредственным участником разработки этой антенны в армии США был Т. Хард. Он дал новую жизнь изобретению Н. Тесла, которую в среде DX-менов категорично отвергают. Их понять можно, ведь этот диполь нетрадиционен и похож на недоработанную модель автомобиля, а DX-менам нужно участвовать в «гонках» без риска. Не стоит скрывать, что есть и другие причины, — Т. Хард представил принцип действия ЕН-антенны в рамках нетрадиционной теории. Вместе с тем, большинству радиолюбителей-экспериментаторов данный тип антенн очень интересен, и его относят к числу экспериментальных и даже мобильных антенн. Что касается схожести запатентованных конструкций Н. Тесла и Т. Харда, то это вызывает лишь улыбку. Что ж, диполь Герца тоже имел своих последователей, это длинный ряд вибраторных антенн, таких как диполь Надененко, антенна Бевереджа, Уда-Яги и пр. Таким образом, каждый из нас вправе внести свою лепту в развитие емкостных антенн и оставить потомкам свое имя в антенной технике.

Современная ЕН-антенна Т. Харда и ее схожесть с диполем Тесла

Так что же представляет из себя ЕН-антенна Т. Харда? Это по сути та же антенна емкостного типа, один в один схожая с диполем Тесла, см. рис. 5а и 5б., разница заключается лишь в месте размещения катушки L2, и это справедливая заслуга Теда, ведь в точке создания электромагнитного поля среда должна быть свободна от вихревых полей создаваемых катушкой индуктивности.

Здесь вместо земли и сферы используется два цилиндра, которые и создают открытую емкость излучающего конденсатора.

Проводя равенство между диполем Тесла и ЕН-антенной Т. Харда, можно придти к следующему определению: ЕН-антенна — это высокодобротный последовательный колебательный контур, где емкость С является открытым элементом, который осуществляет связь со средой. Индуктивность L является закрытым резонансным элементом, он работает как компенсатор малой реактивной составляющей емкостного излучателя.

С этими антеннами можно ближе познакомиться на: http://ehant.narod.ru/book.htm .

Итак, мы пришли к выводу, что диполь Н. Тесла и ЕН-антенна Т. Харда — это совершенно одинаковые антенны, их отличают лишь конструктивные различия. Из теории последовательного колебательного контура мы видим, что в данной антенне должно соблюдаться условие последовательного резонанса. К сожалению, на практике трудно выполнить условия точного фазирования, хотя и возможно. Т. Хард об этом умолчал, но предусмотрел это и предложил несколько вариантов для фазировки антенны так называемой «входной катушкой». По сути это реактивный L–элемент, хотя в некоторых конструкциях используют и фазирующие LC–элементы на основе трансформатора Бушеро-Шери.

Краткое рассмотрение энергетики в пользу диполя Тесла

По утверждению приверженцев ЕН-антенн, синфазность излучения полей Е и Н имеет место и играет немалую роль в помехозащищенности.

Это справедливо, т.к. вектора Е и Н в силу своей синфазности складываются, а отношение сигнал к шуму возрастает в 1,4 раза или на 3 Дб уже в ближней зоне антенны, что не так уж и маловажно.

Если в некоторый момент времени зарядить конденсатор C до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна:

где:
С — ёмкость конденсатора.
Vo — максимальное значение напряжения.

Из приведенной формулы ясно, что напряжение среды Ес в данной антенне прямо пропорционально емкости открытого конденсатора умноженное на квадрат приложенного напряжения... И это напряжение вокруг излучателя антенны может составлять десятки и сотни киловольт, что немаловажно для рассматриваемого излучателя.

Рассматриваемый тип антенны является высокодобротным колебательным контуром, а добротность колебательных контуров значительно больше единицы, то напряжение, как на катушке индуктивности, так и на обкладках конденсатора превышают напряжение приложенное к цепи в Q раз. Не случайно явление резонанса напряжений используется в технике для усиления колебания напряжения, какой либо частоты.

Из теории антенн мы знаем, что для создания необходимого поля, нужны объем и добротность. Уменьшив размеры диполя Герца (Рис. 6а) до размеров рассматриваемых излучателей антенны, к примеру, в 10 раз, во столько же раз уменьшилось расстояние между обкладками конденсатора СС, и соответственно действующая высота h д. Объем ближнего поля Vo уменьшился в 1000 раз (рис. 6б).

Теперь придется включить «компенсирующую» катушку L с добротностью значительно более 1000 и настроить антенну в резонанс. Тогда из-за большой добротности напряжение на цилиндрах СС возрастет в 100 раз, а собственное поле Vo антенны между цилиндрами — в Q, т. е. в 1000 раз!

Таким образом мы имеем теоретическую вероятность того, что поле диполя Тесла равно полю диполя Герца. Что соответствует утверждению самого Г. Герца.

Тем не менее, все выглядит хорошо только в теории. Дело в том, что на практике высокой добротности катушки Q?1000 можно добиться только специальными мерами, да и то только в режиме приема. Следует также обратить особое внимание на повышенную концентрацию электромагнитной энергии в диполе Тесла (ЕН–антенне), которая расходуется на нагрев ближнего пространства и вызывает соответствующее падение КПД антенны в целом. Именно по этим причинам одиночный диполь Тесла при равных условиях подвеса имеет меньшее усиление, чем диполь Герца, хотя имеются и другие утверждения. Если диполь изготовить с немецкой педантичностью и американской уверенностью, может так оно и получится.

В связи с вышесказанным хочется отметить, что антенна Т. Харда — это не вымысел, это достаточно высоко отработанная модель, но которую еще можно и нужно усовершенствовать. Здесь, как говорится, «КОНЬ НЕ ВАЛЯЛСЯ». Пусть Тед не смог донести до нас истинной теории работы его индивидуальной разработки. В конце концов, это всего лишь Т. Хард с усовершенствованной конструкцией диполя Н. Тесла. Да это и не важно! Важно то, что есть возможности идти дальше по этому пути. Пусть следующая разработка антенны будет от Иванова, Сидорова или Петрова!

В тексте были использованы материалы экспериментов. К. Максвелла, работы Н. Тесла, интересные статьи профессора В. Т. Полякова, издания таких известных авторов, как Г. З. Айзенберг, К. Ротхаммель, З. Беньковский, Э. Липинский, материалы Интернет и разработки Т. Харда.

73! UA9LBG & Радио-Вектор-Тюмень
E-mail: [email protected] & [email protected]